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ABSTRACT

IDENTIFICATION OF CELLULAR STRESS RELATED BIOMOLECULES FOR
EVENTUAL USE IN TARGETED THERAPIES OF HEPATOCELLULAR
CARCINOMA

GOZEN, Damla
Ph.D., Department of Medical Informatics
Supervisor: Assoc. Prof. Yesim AYDIN SON
Co-supervisor: Prof. Dr. Rengiil CETIN-ATALAY

September 2021, 102 pages

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancer types.
HCC cells generally display increased resistance to various stress conditions such as
oxidative stress. There are conventional therapies used in treatment of HCC but their
efficacies are low due to resistance gained by cancer cells and off-target effects. In this
thesis study, the aim is to analyze oxidative stress-related gene expression profiles of HCC
cell lines to determine genes that could be targeted in novel diagnostic and therapeutic
strategies. Selenium (Se) deficiency dependent model of oxidative stress was utilized to
identify the genes that are involved in resistance to oxidative stress. The results of a
transcriptome-wide gene expression data were analyzed in which differentially expressed
genes (DEGs) were identified between HCC cells that are either resistant or sensitive to
Se-deficiency dependent oxidative stress. They were further investigated for their
importance by cell signaling network analysis. 27 genes were defined to have key roles;
16 of which were previously shown to have impact on patient survival with primary liver
cancer. Moreover, the expression of the majority of these genes were found to be
correlated with p53-MDM2 pathway. Hence cytotoxic effects of novel small molecules
targeting p53-MDM2 protein-protein interaction were tested on 4 HCC cells. Two
compounds were shown to induce apoptosis in HCC cells and led to nuclear localization
of p53. Altogether, genes identified in this study are proposed to be novel targets for
diagnostic and therapeutic approaches and the p53-MDM2 inhibitors have potentials in
HCC treatment.
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HEPATOSELLULER KARSINOM HEDEFLI TEDAVILERINDE
KULLANILMAK UZERE HUCRESEL STRES KAYNAKLI
BIYOMOLEKULLERIN BELIRLENMESI

GOZEN, Damla
Doktora, T1p Bilisimi Bolimii
Tez Yoneticisi: Dog. Dr. Yesim AYDIN SON
Es-Danigsman: Prof. Dr. Rengiil CETIN-ATALAY

Eylil 2021, 102 sayfa

Hepatoselliiler karsinom (HCC) en sik goriilen ve 6liimciil kanser tiirlerindendir. HCC
hiicreleri oksidatif stres gibi farkl stres durumlarina karsi genellikle direncglidirler. HCC
tedavisinde kullanilan geleneksel yontemlerin etkinligi kanser hiicrelerinin kazandigi
direng ve hedef dis1 etkilerden dolay: diisiiktiir. Bu tez ¢aligmasindaki amag¢, HCC hiicre
hatlarmin oksidatif stresle alakali gen ifade profillerini inceleyerek yeni tan1 ve tedavi
yontemlerinde hedeflenebilecek genleri belirlemektir. Reaktif oksijen tiirlerine direngte
kritik olan genlerin belirlenmesi i¢in Selenyum eksikligine bagli oksidatif stres modeli
incelenmistir. Transkriptom gen ifade analizi verileri incelenerek Selenyum eksikligine
bagl oksidatif strese duyarli ve direngli HCC hiicre hatlar1 arasinda farkli ifade edilen
genler belirlenmistir. Bu genler ag analizi yontemleri ile incelenmis ve 27 genin anahtar
rollerinin oldugu bulunmustur; bunlardan 16’smin daha 6nceki ¢alismalarda karaciger
kanser hastalarinin sag kaliminda etkili oldugu gosterilmistir. Ayrica, bu genlerin cogunun
ifadesinin p53-MDM2 yolaginda gorevli genlerle iliskili oldugu bulunmus ve p53-MDM?2
interaksiyon inhibitorlerinin 4 HCC hiicre hatt1 lizerindeki sitotoksik etkileri potansiyel
tedavi olarak test edilmistir. iki bilesigin HCC hiicre apoptozuna yol agtig1 ve p53’iin
niikleusa lokalizasyonunu sagladigi gosterilmistir. Sonug olarak, bu ¢aligmada belirlenen
genler yeni tan1 ve tedavi yaklagimlarinda hedeflenmek iizere onerilmektedir ve p53-
MDM?2 inhibitdrleri HCC tedavisinde potansiyel tagimaktadir.

Anahtar Sozciikler: Hepatoselliiler karsinom, oksidatif stres, selenyum, Hepatit B viriisii,
transkriptom analizi
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CHAPTER 1

INTRODUCTION

Cancer is one of the major public health problems worldwide, being the second most
fatal disease according to World Health Organization. The number of patients
diagnosed with cancer has been increasing each year (Siegel et al., 2012). Recently,
many studies are conducted to develop novel treatment strategies with increased
efficacy and decreased side effects, due to the inadequacy of the existing methods.
Along these studies, many of them focuses on novel biomarker discovery that could
be used as targeted treatment strategies. The determination of cancer cell
characteristics in more detail would therefore be important to give more insight about
molecular mechanisms behind carcinogenesis and could be used to find novel genes
for targeted therapy.

This chapter aims to give detailed information about hepatocellular carcinoma (HCC),
common external stress conditions including oxidative stress, stress response,
importance of Selenium element and the importance of p53 protein as a result of
genotoxic stress with the intention of providing background information and insight
about the main motivation of this thesis study. Moreover, the use of transcriptome-
wide analysis and bioinformatics approaches used to obtain the results would be
discussed for their power and significance in the discovery of novel biomarkers as
potential diagnostic and therapeutic targets in the further parts.

1.1 Hepatocellular Carcinoma

HCC is the fourth most fatal and the sixth most frequent cancer worldwide accounting
for >80% among all liver cancer types (Bray et al., 2018; Yang et al., 2019). There are
several risk factors related to hepatocarcinogenesis including hepatitis B (HBV) and
hepatitis C (HCV) viral infection, alcohol and tobacco consumption, toxin exposure
such as aflatoxin B1, obesity, chronic liver disease or cirrhosis. It is counted as one of
the most aggressive cancers; hence the early diagnosis of it is of significance in the
efficacy of the therapy.

HCC frequently develops as a result chronic liver disease associated with cycles of
inflammation and hepatocyte regeneration. Liver regeneration is maintained by
hepatic progenitor cells which carry stem cell properties. Continuous activation of



these cells induces liver fibrosis, chronic inflammation, and ultimately hepatocellular
carcinogenesis. (Wu et al., 2020)

1.1.1 Hepatitis B Virus Infection

Chronic HBV infection accounts for more than 50% of the HCC incidences worldwide
and the number of infected people is about 350 million (Y. Xie, 2017). HBV is a DNA
virus which is composed of a double-stranded relaxed circular DNA (rcDNA) inside
a nucleocapsid and an envelope. In case of HBV infection, virus enters into the cell to
release its rcDNA which is delivered into the nucleus to be converted to covalently
closed circular DNA (cccDNA); which is a more stable form of'the viral genome. Viral
mRNA synthesis could then be performed from this template DNA. (M. Xie et al.,
2018)

HBV-dependent hepatocarcinogenesis occurs depending on various direct and indirect
mechanisms. Rapid replication of HBV genome, its integration site through the host
genetic material, viral genotype and its mutant type and the expression of virus-driven
oncogenes are the most important factors in the oncogenic transformation. Chronic
HBYV infection also results in a continuous host response which generates liver
inflammation, and it might lead to liver fibrosis and even to cirrhosis if not treated.
This might be another mechanism that increase mutation rates resulting in
hepatocarcinogenesis (Y. Xie, 2017).

After the delivery of the HBV DNA into host nucleus, viral DNA is integrated into the
host DNA resulting in genomic instability and insertional mutagenesis (Levrero &
Zucman-Rossi, n.d.) Many previous studies focused on determining the presence of
any preferential integration sites; however sequencing studies showed that integration
sites were randomly distributed through the host genome with a little bias through
chromosome 10 and 17 (An et al., 2018).

The expression and translation of viral genes to viral proteins for an extended period
including HBx protein disrupts normal cellular transcription functions to decrease
proliferation control of the cells leading to carcinogenesis (Figure 1). HBx also have
control over host epigenetic regulations to alter the expression of tumor suppressor
genes (Levrero & Zucman-Rossi, n.d.). In addition to these, HBx has multiple other
oncogenic roles by affecting cellular activities related to DNA repair, cell cycle
progression and apoptosis. (Yan et al., 2017).



Ras-Raf MAPK PakAKT KFC AKT-mTOR

Si li 5 v
18P ie Signaling pathway Signaling pathway

Signaling pathway pathway

DNA damage

repair | et

HBV-related HCC

Figure 1: The molecular mechanisms that are possible drivers for HBx induced
hepatocarcinogenesis (Yan et al., 2017)

1.1.2 TP53 and Hepatocellular Carcinoma

TP53 is a tumor suppressor gene with various transcription factor functions including
the regulation of cell cycle arrest, inhibition of angiogenesis, senescence and apoptosis
induced as a cellular response to various stress factors as well as DNA damage repair
mechanisms. Previous studies identified that TP53 mutations are the most detected
alterations in HCC patients, and they are associated to poor prognosis and survival.
(Woo et al., 2011).

The regulation of cell differentiation by TP53 gene is another widely studied subject,
and its expression levels are known to be very low in human embryonic stem cells and
the activation of p53 results in differentiation of the stem cells. The researchers showed

the correlation between lack of p53 in HCC cells with stem cell reprogramming.
(Hong et al., 2009)

In normal cells, p53 is degraded to keep the levels low. Mdm2 protein is responsible
for this degradation process. It binds to p53 to transport it from nucleus to cytosol,
provides it ubiquitylation to prepare its degradation by proteasome. Mdm2 dependent
degradation of P53 is reversible and in response to a stress condition p53 levels might
increase to regulate the cells response to the stressor and eventually the cells faith.
(Purvis et al., 2012) Mdm2 known to be overexpressed in many cancer types resulting
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in the degradation of p53. Therefore, inhibition of p53-MDM?2 interaction might be a
promising therapeutic strategy for the treatment of HCC patients. (Cheéne, 2003).

1.1.3 Current Treatment Strategies for Hepatocellular Carcinoma

There are several treatment options currently used for the treatment of HCC and the
choice of one is highly linked to the tumor stage. Surgical operations, liver
transplantation and other curative therapies are only effective when the tumor is in its
early stage. For the treatment of more advanced stages, pharmacological methods are
currently the most effective options; but when the low overall survival of HCC patients
are taken into consideration, there still is a need for better methods. (B. Chen et al.,
2020b; Subramaniam et al., 2013).

1.1.3.1 Conventional Treatment Methods for Hepatocellular carcinoma

For patients with early stages of HCC, hepatic resection is a treatment option when
they have well-preserved liver function. Liver transplantation is another highly used
option and it has the advantage of removing both the tumor and cirrhotic tissues to
provide 70% 5-year survival rate. For the treatment of patients where resection and
transplantation are not possible, ablation could be considered; especially when the
tumor is in its early stage. (Cabebe, 2021; B. Chen et al., 2020a)

For the HCC patients with an intermediate staging, transarterial chemoembolization
(TACE) treatment is a suitable option, which is consist of the administration of a
chemotherapeutic agent to the artery of tumor nodule. This method was shown to
significantly increase the survival time of patients and therefore is one of the best non-
surgical treatment options. Transarterial radioembolization (TARE) is another similar
method which is done by the injection of radioactive compounds into the tumor nodule
artery. TARE seems to have more targeted effects compared to TACE and therefore is
a more suitable option for the treatment of HCC patients with more advanced stage;
but both options were shown to increase the overall survival of patients significantly.
(Cabebe, 2021; B. Chen et al., 2020a)

Most of the patients have HCC in advanced stage due to the late diagnosis; and in that
case the commonly used treatment strategy is chemotherapy. As mentioned in previous
sections, liver cancer cells are highly heterogeneous structures with the involvement
of hepatic stem cell population; this mixed nature of HCC make them gain resistance
too conventional methods to invade or reoccur; which leads to decreased treatment
efficacy. Chemotherapy also has many side effects; since it targets all proliferating
cells, not specifically cancer cells. For the treatment of the patients with HCC in
advanced stage, the systemic administration of pharmacological agents is the most
efficient strategy. (Cabebe, 2021; B. Chen et al., 2020a).



1.1.3.2 Targeted Therapy

Recently, many studies have been performed to find novel diagnostic strategies and to
develop new therapies. For the HCC patients in which case resection or transplantation
is not an option, first-line systemic therapy is recommended by various guidelines.
Sorafenib is one of the most efficient, approved drugs for advanced HCC treatment
which extends patient survival for only 2.8 months. Lenvatinib is another approved
targeted first-line therapy in advanced HCC cases. But the efficiency of these first-line
treatment strategies remains to be low due to the tolerance gained by the tumor cells
against them. Cancer cells escape from the effects of these agents by using alternative
proliferative molecular pathways.

In order to develop better strategies, using Sorafenib in combination with other
compounds targeting those alternative pathways such as MEK/ERK, mTOR, EGFR,
c-MET pathways is an option. To solve this problem the use of second line agents is
widely searched for their potentials in HCC treatment. In previous trials, Regorafenib
was found to show effective results in the treatment of HCC patients who gained
resistance to Sorafenib, extending patient survival for 4 months. However, it was also
found that only ~30% of the patients got benefit from the second line Regorafenib
treatment strategy and well-preserved liver functioning is the factor that directly
effects the treatment efficacy. Another second-line agent use to treat HCC with
resistance to Sorafenib is cabozantinib; which is another tyrosine kinase inhibitor.
However, discovery of novel agents that could be used either alone or in combinational
treatment strategies is still a need (A. Huang et al., 2020).

To fill this gap and find novel therapy strategies with increased efficacy, novel target
discovery has great importance to be used as a target to inhibit cancer cell proliferation
and resistance. The determination of cancer cell characteristics in more detail would
give us more insight about molecular mechanisms behind carcinogenesis and could be
used to find novel genes for diagnosis and targeted therapy.

1.2 Cellular Stress Response

Investigation of how cancer cells respond to various cellular stress conditions is one
of the most important characteristics in order to understand their molecular mechanism
of action. Generally, cells respond to stress in a variety of ways from activation of
pathways that promote survival to initiating programmed cell death to eliminate
damaged cells; but many HCC cells scavenge mechanisms to resist stress-induced
apoptosis and they survive (Fulda et al., 2010). Determination of stress response gene
expression profiles is, therefore, essential for establishing the nature of cancer cells.

A stress factor could be any factor that alters cells” optimum living environment such
as temperature, pH and osmotic pressure changes or over accumulation of Reactive
oxygen species (ROS). These factors initiate cellular responses; either intrinsic- within
the cell or through the immune system. (Ak & Levine, 2010). When cells sense a stress
condition, they try to develop an adaptive response by altering their gene expression
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regulations in order to maintain cellular balance after the stress factor is removed.
Many transcriptional studies were conducted to determine the stress response gene
expression profiles.

Sensing the stress factor is the first step and the cells have diverse sensors in order to
be able to adapt despite all the environmental changes. After sensing this factor, cells
should initiate a rapid response to eliminate or adapt it and survive. They take the
inputs and send the information to effectors through signal transduction. Immediately
the stress signal reaches to effectors, rapid alterations occur inside the cell such as
translational downregulations, channel and transporter protein regulations and
activation of stress-response gene expressions. (de Nadal et al., 2011).

For the initiation of the extrinsic immune response of a cell against a stressor; NF-KB
is the main regulatory pathway for the modulation of the expression of many
downstream genes; which could also act like an oncogene since it is responsible for
cellular proliferation activities. For the initiation of intrinsic stress, the presence of a
factor such as disturbance in the balance of ROS, amino acid or glucose levels,
hypoxia, damage to the DNA, the presence of toxins etc. is required. In such cases
cells responds to these stress factors through p53 protein to prevent the effects of the
factor and repair the damage. (Milisav, n.d.; Sengupta et al., 2010) Cells respond stress
inducers by trying to repair the effects of damage for the recovery of normal state,
adapt to the stress factor or induce autophagy or apoptosis. If the stressor could not be
removed from the environment and the effects of it are accumulated, this might result
in damage to all parts of a cell including DNA, protein and lipids which in turn cause
various disease such as diabetes, cardiac or neurodegenerative disease and even
cancer. (Milisav, n.d.)

1.3 Oxidative Stress

One of the stress inducing factor in eukaryotic cells is try to adapt to the oxidative
stress conditions for which cells have evolved different responses. Oxidative stress
occurs when cells are unable to detoxify the reactive agents or to repair the resulting
damage that formed because of systemic accumulation of ROS. Disturbances in the
normal redox state of cells produce peroxides and free radicals that might give damage
to all components of the cell, including nucleic acids, proteins and lipids, resulting in
toxic effects. It may also suppress apoptosis and promote proliferation, invasiveness
and metastasis leading to carcinogenesis (Halliwell, 2007).

1.3.1 Reactive Oxygen Species and Their Cellular Effects

Reactive oxygen species are composed of Superoxide radicals (O2"), hydrogen
peroxide (H20z), hydroxyl radicals ("OH), and singlet oxygen element and the sources
responsible for their production might be both exogenous and endogenous (Figure 2).
Mitochondrial oxidative phosphorylation is the primary source of the endogenous
ROS production in cells, which is generated by the reduction of oxygen molecule
throughout the respiratory event. Peroxisomes and Cytochrome P450 are the other
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endogenous sources leading to ROS production. Exogenous sources include UV light
and ionizing radiation exposure, inflammatory cytokine accumulation, etc. (Pizzino et
al., 2017; Waris & Ahsan, 2006).

Endogenous sources Exogenous sources
Mitochondria UV light
Peroxisomes lonizing radiation
Cytochrome P450 Inflammatory cytokines
Pathogens
) /
ROS

!

Oxidative stress
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Figure 2: The endogenous and exogenous sources that result in ROS production, its
cellular effects and role in carcinogenesis are depicted (Waris & Ahsan, 2006)

It is essential for a cell to keep the levels of ROS low. When cells lose the balance
between the levels of ROS and antioxidants, the accumulation of extensive amounts
of ROS results in oxidative stress which give damage to nucleic acids, proteins and
lipids which might result in mutations, instability in the chromosomal structure,
damage to membranes and in turn loss of normal functioning of various organelles
(Figure 2). Cells must maintain the balance in order to protect themselves from these
oxidant effects. (Pizzino et al., 2017). Inability to re-maintain the balance results in
various oxidant effects such as the damage given to the mitochondrial elements
prevents the organelle to function normally, resulting in improper metabolic activities.
It might also result in extensive cytochrome c release which in turn activates apoptosis.
(Murphy, 2009). Overall, those effects might result in transformation of a normal cell
into cancer if not prevented.



1.3.2 Cellular Mechanisms and Antioxidants Against Oxidative Stress

Cells have adapted different enzymatic or non-enzymatic mechanisms to reverse the
cellular effects of oxidative stress. Enzymatic strategies based on the activities of
various enzymes, including SOD and GPX (Figure 3). When O™ is generated inside
the mitochondria, it is reduced to H>O> by superoxide dismutase (SOD) enzyme in the
mitochondrial intermembrane space and matrix. It is then fully reduced to water
molecule by glutathione peroxidase (GPX). The non-enzymatic mechanisms use
antioxidant molecules such as lipoic acid, glutathione, coenzyme Q10, etc. to reduce
ROS molecules water molecules. (Pizzino et al., 2017).
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Figure 3: mtROS poductions mechanism and the cellular mechanisms to reverse the
ROS effects inside the mitochondria. (Li et al., 2013).

1.4 Cellular Antioxidant Role of Selenium

Selenium (Se) is a trace element which is required for human health. It is found in
various nutrients such as milk, meat, fruits & vegetables, fish and especially Brazil
nuts and the deficiency of it results in various abnormalities. Se is found in soil, so it
is inserted to the food chain through the plants; therefore, Se concentration in the soil
of a region is the primary determinant of its regional consumption levels. (S. Darvesh
& Bishayee, 2010)

Se is found in the structure of selenocysteine (SeCys) amino acid, which is the building
block of selenoproteins. There are about 25 different selenoproteins identified in
human with various functions including antioxidant and redox signaling function
(Figure 4).
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Figure 4: The known human selenoproteins and their functions. (from (Papp et al.,
2007)

1.4.1 The Importance of Selenium to Human Health

As mentioned in the previous section, Se is an essential element in human health and
the deficiency of it was shown to be related to the development of many diseases
including metabolic, neurodegenerative, cardiovascular disorders and even cancer.
Among the selenoproteins identified for today, many of them have key roles in
signaling, antioxidant defense and redox signaling-related functions to maintain the
balance. A mentioned in section 1.3.2, GPX proteins have key roles in the reduction
of both hydrogen and lipid peroxides; while TXNRD proteins are necessary elements
for the maintenance of balance in thiol system. Many others are responsible for the
proper protein folding, thyroid hormone metabolism and endoplasmic reticulum stress
handling. There are still many identified selenoproteins with unknown functions and
should be further studied. (Guillin et al., 2019; Papp et al., 2007).

1.4.2 Selenium-Dependent Glutathione Peroxidases

GPX family selenoproteins constitutes one of the most important elements as
antioxidant defense mechanisms. Until now, 8 different GPX paralogs were identified
the catalytic unit of 5 of which are composed of selenocysteine and therefore
categorized as selenoenzymes; while the remaining 3 are composed of cysteine. GPX1

and GPX4 are the most widely expressed selenoproteins among humans. (Guillin et
al., 2019).

GPX proteins uses glutathione as cofactor to provide the reduction of H2O: to a H,O
molecule. During this transformation, the oxidation of glutathione tripeptide occurs to
form oxidized glutathione and it is transformed back to glutathione with the use of
NADPH by glutathione reductase. The concentrations of NADPH and GPX is
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therefore important for a cell to maintain the oxidant-antioxidant balance and the
deficiency of them were shown to result in inflammation and atherosclerosis in mice.
(Lietal., 2013).

1.4.3 Selenium-Dependent Thioredoxin Reductases

In addition to the glutathione reductive system, thioredoxin is another key mechanism
that is responsible for the reduction of molecules in human cells. Thioredoxin enzymes
are composed of 3 selenoproteins (TXNRDI1-3) so their functioning is strictly
dependent on the presence of Se. They have essential roles in the reduction of protein
sulfides as well as HoO», which make them important elements in antioxidant defense
mechanisms, DNA synthesis and formation of disulfide. (Guillin et al., 2019).

In humans, TRX protein is found in the mitochondria, and they play oxidoreductase
roles by interacting with other proteins. In previous studies performed on mice, it was
found that the absence of Trx2 resulted in increased apoptosis and vascular
abnormalities. It was also shown that Trx2 functioning have regulated the permeability
of mitochondria to protect the cells against oxidant-dependent apoptosis. (Li et al.,
2013)

1.5 Oxidative Stress and Hepatocellular Carcinoma

One of the major driving forces for carcinogenesis is the DNA damage caused by ROS;
which is either a result of improper repair functioning or the accumulation of extensive
amounts of ROS. Oxidant elements were shown to have both mutagenic and
carcinogenic effects on DNA which make them one of the potential accountable for
the initiation, promotion and progression of carcinogenesis. (Waris & Ahsan, 2006).

Molecular mechanisms involved in liver cancer are more complex than other cancers.
One of the apparent characteristics of liver cancer cells is their increased resistance to
various stress conditions such as chronic viral infections or toxins. It is essential to
determine the stress response gene expression profiles of these cells due their
involvement in hepatocarcinogenesis.(di Maso et al., 2015)

1.5.1 HBV-HCV Infection and ROS Production

As explained in the previous sections, ROS concentrations has various roles in cellular
activities including metabolic regulations. When a virus infects a cell; it uses host
mechanisms to replicate and maintain its metabolic activities; so, the concentration of
ROS also directly affects viral growth and host defense mechanisms against the
infection (Figure 5). The above-mentioned defense mechanism includes the initiation
of phagocyte activity which is linked to ROS production and the phagocyte response
itself also results in cytokine release which serves as a pro-oxidant. When HBV or
HCV virus enters human liver cell, they increase the ROS levels by driving the
production of pro-oxidants through the host defense mechanism as well as preventing
the functioning and production of antioxidant enzymes. The increased metabolic by-
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products due to viral replication activity is another factor that result in elevated ROS
production. The increased ROS levels in liver cells might accelerate and enhance the
viral replication. (Waris & Ahsan, 2006)
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Figure 5: The factors providing the balance between ROS and antioxidant mechanisms
are depicted. This balance might be disrupted during a viral infection, which in turn
results in oxidative stress. (Guillin et al., 2019).

1.5.2 Oxidative Stress-Dependent Hepatocarcinogenesis

One of the most well-known biomarkers of oxidative stress is 8-hydroxyl-2-
deoxyguanosine (8-OHdG), which is a frequently seen form of ROS-induced oxidative
lesions. They are also accepted as indirect cancer biomarkers because of their potential
mutagenic effects. (Valavanidis et al. 2009). They are accounted as one of the potential
responsible for GC = TA transversions and CC = TT substitutions occurred in Ras
oncogene and p53 tumor suppressor gene in HCC. (Cooke et al., 2003).

Transition of a hepatic cell to liver cancer frequently occur as a result of HBV or HCV
infection or aflatoxin exposure which is linked to the increased oxidative stress levels
after the cells are infected. The viral replication is promoted by higher ROS
concentrations inside the host cells through the initiation of expression of oncogenic
factors and suppression of tumor suppressor genes leading to hepatocyte survival and
carcinogenesis. (Waris & Ahsan, 2006).

In previous studies, the initiation of NRF2 expression was shown to have important
roles in the survival of HCC cells despite the increased ROS levels inside cells. It was
found that in 5-15% of HCC cases, NRF2 or its inhibitory gene KEAP1 were mutated
resulting in activation of NRF2 gene leading to tumor cell survival. (Levrero &
Zucman-Rossi, n.d.).
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1.6 Selenium and Hepatocellular Carcinoma

There are various in vitro and in vivo studies that show the inverse correlation between
Selenium levels and the risk of HCC development. Many investigators have focused
on the molecular mechanism behind this correlation and several of these studies have
found that deficiency of Selenium resulted in reduction of antioxidant functions which
lead to carcinogenesis. (Casaril et al., 1994; Czeczot et al., 2006). There are various
meta-analyses studies that further show the correlation between the Selenium-
deficiency and the HCC development incidence in humans. (Gong et al., 2019; Z.
Zhang et al., 2016) In addition to these studies, Yu et al. focused on the effects of
Selenium supplementation on HBV+ patients for the risk of hepatocarcinogenesis and
found a decreased risk of HCC development in HBV-carriers after Selenium
supplementation. (M.-W. Yu et al., 1999; Yu Yu et al., 1997). The protective effects
of Selenium were not limited to HCC development, and it was shown that low
Selenium levels were associated to cirrhosis and other viral liver disorders as well. (S.
Darvesh & Bishayee, 2010)

1.7 High Throughput Techniques in Biomarker Discovery

One of the widely used techniques for the discovery of disease-related target genes to
propose as candidate biomarkers is high-throughput expression methods and their
analysis. Researchers gather extensive amount of expression profile information from
various transcriptome-wide gene expression analysis methods including RNA-seq and
microarray. The next challenge is the analysis of this expression result to extract
meaningful data. (Nacu et al., 2007).

Generally, the analysis starts with the normalization and background correction of the
raw expression data. Then, to determine differentially expressed genes (DEGs)
between different phenotypes various statistical methods are available and chosen
depending on experimental design. The DEGs could be filtered by their p-values and
fold-change values and the most significant DEGs could be further used to investigate
for their molecular importance and association to disease. (Nacu et al., 2007).

A single gene expression value itself has limited value, since genes and their products
function in interaction with others and with DNA in complex ways. Because of this
reason, most researchers have been focused on strategies that takes groups of genes
and proteins into consideration including network analysis methods, Gene Ontology
(GO) analysis and Gene Set Enrichment Analysis (GSEA). (Grimes et al., 2019; Nacu
et al., 2007).

1.7.1 Expression Microarrays

High-throughput expression analysis methods such as transcriptome analysis by
microarray or RNA-seq studies have great potential to determine the changes occur at
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the molecular level in a cell to enlighten initiation and development of disorders
including hepatocellular carcinogenesis. By using such methods, the molecular
properties of a cancer cell could be detected by comparing gene expression values in
the two different cell types- such as diseased and healthy or benign and malignant, etc.
to determine thousands of DEGs in a very short time to further investigate gene
expression profiles. (S. Xie et al., 2019). This information can guide target-based
approaches to develop novel therapy strategies. (B. Chen et al., 2020b).

Microarrays are useful tools to identify expression levels of many genes
simultaneously. Oligonucleotide probes are printed on known positions on a chip to
function as probes for the detection of complementary binding of messenger RNA
(mRNA) transcripts isolated from samples of interest. mRNA of the reference and
experimental samples are isolated and complementary DNA (¢cDNA) synthesis is
performed for each sample, which are then labelled with fluorescent dye either two-
channeled or single-channeled. For the two-channel analysis; reference and
experimental samples are labelled with separate colors of dye and their mixture is put
on array chip for hybridization to compare expression levels relative to each other
while one-channel analysis uses the same dye color for all sample types (Figure 6).
Microarray is than scanned to detect gene expression levels of each gene in each
sample group. (Slonim & Yanai, 2009).

Choose technology,
Design experiment

Prepare samples,
Hybridize to microarrays

Visualize data
I Evaluate data quality,

Remove outliers

Normalize data

Find differentially Build and apply

expressed genes :
or gene sels . classifier

Figure 6: The experimental and data analysis steps of an expression microarray.
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Examination of data quality and elimination of the low-quality results and the
normalization of the raw data are the first steps in the analysis of the microarray reads
(Figure 6). Normalization aims to clarify biological variations by preventing the
effects of technical differences (Slonim & Yanai, 2009). The next step is to define the
differentially expressed genes by comparing the samples of interest depending on the
biological question and interpret the results by using various tools available which will
be mentioned in more detail in the following parts.

1.7.2 Differential Gene Expression Analysis and Linear Models for Microarray Data
Package

In the analysis of the gene expression data, one of the challenges that researchers
encounter during statistical comparison is the multifactor designed experiments and
the small sample size. In order to overcome this problem, novel statistical techniques
have been developed. Linear Models for Microarray Data (limma) is an R
programming language package for the analysis of gene expression data such as
microarray, RNA-seq and quantitative PCR from the beginning- pre-processing steps-
to the end. (Ritchie et al., 2015).

limma uses expression values in a matrix format, each gene is represented in the rows
while different samples are collected in each column. Each gene in the rows is fitted
to a linear model providing a flexible design for the analysis of such complex data.
The linear model used by this approach has the strength to analyze all data together
instead of pairwise comparisons of samples allowing information sharing across
genes.

The statistical approach used in limma is empirical Bayes method which uses the
distribution of all standard variation values to estimate a moderated standard deviation
to be used in the t-test denominator to perform moderated t-test. This provides the
power of limma in the analysis of small sample numbers by including information
between genes.

The first step in limma analysis is to fit all the expression values to a linear model
which fully models the systematic part of the data. Each row of the design matrix
corresponds to a gene in the experiment and each column corresponds to a sample.
Then, the contrast step allows the fitted coefficients to be compared in as many ways
as the biological questions to be answered.

1.7.3 Network Analysis

In order to gather meaningful results from the gene expression data obtained from
sequencing or microarray techniques that were mentioned in the previous section,
investigation of the functional properties and relations between DEGs and the related
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proteins is needed. As already explained, genes interact with each other in biological
pathways; and those gene expression levels are correlated either because of regulation
by a common transcription factor or because of their regulatory roles over each other.
Therefore, analyzing the genes as a whole in a network with the topology information
gives more insight about their functioning. For instance, given a differential network,
hub genes in the network with higher node degree values might have key roles in the
regulation of expression of the connected genes or the connected genes in a branch
might be responsible for roles in a common pathway; therefore, might have key roles
in the disease under study. (Grimes et al., 2019; Zuo et al., 2016).

Protein-protein interaction (PPI) networks are also powerful tools to study molecular
mechanisms behind diseases. They could be used to gain insight about the pathways
that are associated to the disease to determine biomarkers for the diagnosis and
treatment of it. They are especially widely used for the discovery of targeted therapy
strategies in cancer. (Zuo et al., 2016). KEGG pathways, Reactome pathways, String
database are all used to integrate the pathway information into DEG analysis (Grimes
et al., 2019).

1.7.3.1 String Database

STRING database collects protein-protein interaction information that are proved as
well as predicted. These protein-protein interaction might be either directly through
physical attraction or indirectly because of their functional association. This
interaction information comes from various sources, which could be selected and
filtered by users depending on the confidence interval of interest. The main sources
for the data are experimental results, co-expression, previously known interactions
from other databases, genomic predictions, and automated text-mining results. The
database contains 24584628 proteins information to date, coming from 5090
organisms. (Szklarczyk et al., 2019).

1.7.3.2 Prize Collecting Steiner Tree (PCST) Algorithm

It is generally difficult to interpret the network data due to the noise and large size of
it and various strategies were developed to solve this problem. Solving PCST problem
is one of these approaches to reach more optimized interaction data. PCST constructs
optimum trees from the given DEGs or proteins (terminal nodes) by using human
interactome data as a reference to connect them to each other directly or through
hidden, undetected nodes (Steiner nodes) through the shortest path between the nodes.
All the terminal nodes do not have to be included in the tree, which is one of the
strengths of the algorithm to provide higher-confidence trees. (Tuncbag et al., 2012).

The algorithm constructs trees based on cost of interactions showing whether the
interaction is real and prizes to exclude any terminal determined by confidence in
proteomic/transcriptomic data. It is designed to maximize the prize by including most
of the genes from the given gene list and goes through the nodes of interactome data
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by taking the edge weight values as cost to find the shortest path by minimizing the
cost. (Tuncbag et al., 2012)

In order to construct meaningful trees, some parameters have to be optimized first; J,
o, and p are the most important input parameters that must be chosen correctly. o is
the value that determines the number of the generated trees by giving a penalty for the
construction of each new tree. B is the value that determines the hub frequency in the
tress; the higher it is the more hubs there are and the bigger the generated trees are.
Similar to this value p also controls the hubs generated, by competing the degree of
nodes to prevent any biased information. It clarifies a gene/protein being a hub whether
because it is a highly studies gene/protein so have many determined interaction
information, or it really has a greater degree in the interactome data. The smaller this
parameter is, the less control we get over the biased hub information.

The optimization of the aforementioned input parameters has great importance for the
generation of accurate trees. Forest-tuner script is a publicly available script in github
((https://github.com/gungorbudak/forest-tuner) which runs forest for every
combination of parameters within the pre-determined interval to make it possible to
choose the most optimum values for each DEG lists through these options.

1.7.4 Gene Set Enrichment Analysis (GSEA)

GSEA is a computational tool to test the presence of any significant difference in the
enrichment of gene sets of interest such as known pathways or GO ontologies between
two different groups of samples (Subramanian et al., 2005). These gene sets are
composed of pre-defined genes of interest and the average value of the test-statistics
of its individual components is used to determine a group score. The higher the group
score, the more likely they are to be expressed differentially between the compared
samples. (Nacu et al., 2007).

1.8 The Aim and Motivation of the Thesis

The first part of this thesis focuses on the discovery of novel biomarkers by the
examination of oxidative stress response genes to be used as potential targets in HCC
treatment. Normally, deficiency of Selenium results in oxidative stress, leading to
apoptosis. However, in a previous study performed with HCC cell lines, it was found
that 10 of 13 HCC cell lines tolerate Selenium-deficiency to escape apoptosis and most
of these tolerant cell lines had HBV sequence integrated in their genome, indicating
that this virus might have a role in that acquired tolerance (Irmak et al., 2003). A new
experiment was designed with two isogenic HCC cell lines; HepG2 and Hep(G2-2.2.15
cells to test their response to Selenium-deficiency (Figure 7). These two cell lines have
the same genome, except the HBV genomic integration in HepG2-2.2.15 cells and it
was found that HepG2 cells were Selenium-deficiency sensitive while HepG2-2.2.15
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cells tolerated the absence of Selenium to survive. It could be a result of a cryptic
mechanism acquired during hepatocarcinogenesis under viral stress.

During the viral genome integration into HepG2-2.2.15 cells; an increase in ROS
generation is expected to be seen in the cells which alters the cellular gene expression
(Waris & Ahsan, 2006). This would result in an intrinsic variation in the gene
expression of HepG2-2.2.15 cells compared to HepG2 cells; independent of the
Selenium status of the medium that the cells are grown. In addition to this intrinsic
effect, we also suspect the presence of an acquired mechanism depending on the
absence of Selenium, which controls the differential response of the two cell lines to
Selenium-deficiency. Understanding the molecular mechanism behind this tolerance
might give some knowledge about cellular response mechanisms gained by some
cancer cells to escape from oxidative stress dependent apoptosis. The resistance genes
that we identified can be further exploited as drug targets or diagnostic purposes.

HepG2 . ‘et HepG2-2.2.15

Se+ Medium Se- Medium Se+ Medium Se- Medium
| :
:Oxidatlvc |
Stress l
Survival Apoptosis Survival Survival
HBV-Integration Effect + Selenium-Deficiency Effect

Figure 7: Experimental model design. HepG2 and Hep(G2-2.2.15 cells are two isogenic
hepatocellular carcinoma cell lines with the difference of HBV genome integration in
2.2.15 cells.

In the first part of our study, FOXAI gene was identified as one of the potential
biomarkers for HCC. From previous studies, it was known that FOXAI binds to
MDM2 chromatin region to regulate its transcription resulting in decreased p53 levels
(Swetzig et al., 2016). There were also many correlations detected between the
expression levels of DEGs identified in the first part and the genes that have roles in
p53-MDM2 pathway in our samples of interest. Depending on this association
targeting p53-MDM2 mechanism might be a potential therapeutic for HCC.

In the second part of this thesis, we aimed to identify anticancer activities of potential

inhibitors of p53-Mdm?2 interaction on HCC cell lines with various p53 mutation status
and define the underlying mechanisms. HepG2 cells has wild-type gene whereas,
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Huh7 and Mahlavu cells have codon Y220C and R249S mutations respectively, and
Hep3B cells do not express p53 protein at all.
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CHAPTER 2

MATERIALS AND METHODS

In this section, the experimental and bioinformatics analysis methodologies are
presented. First part focuses on the wet lab experiments used in the determination of
biomarkers and the testing of the effects of the compounds that inhibits Mdm2-P53
interaction on HCC cell lines. Then, in the second part, bioinformatics approach used
to analyze the gene expression data was explained.

2.1 Wet Lab Experiments
2.1.1 Cell Lines and the Microarray Experiment

Gene expression analysis data by Human Genome U133 Plus 2.0 Array Affymetrix
Array was previously acquired within the framework of TUBITAK 104S333 from the
microarray experiment performed in Ankara University, Institute of Biotechnology.

For the verification of cell confluency in the presence or absence of Se, the oxidative
stress resistant HepG2-2.2.15 cell line (HT-HBYV integration) and sensitive HepG2 cell
line were grown in DMEM medium (Gibco, Thermo Fisher Scientific, MA, USA) with
0.01% FCS (BioChrom, Berlin, Germany) either supplemented with 0.1 pM Na2SeO3
(Sigma, Taufkircher, Germany) (Se positive) or not (Se negative) for 3 days in
duplicates at 37°C under 5% CO2. The live images of each cell line grown in both
conditions were taken under inverted microscope separately for each day.

For the second part of the study, four HCC cell lines, HepG2, Huh7, Hep3B and
Mahlavu were cultured in DMEM medium (Gibco, Thermo Fisher Scientific, MA,
USA) supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin
antibiotic and kept in cell culture incubator at 37 °C under 5% CO2.

2.1.2 Cytotoxicity Assay for the Testing of p53-MDM?2 Interaction Inhibitors
Cells were cultured on 96-well plates (1000-3000 cell/well) to test the cytotoxic

activities of compounds. After 24 hours of incubation at 37 °C, treatments with
compounds or DMSO control were done in 5 different concentrations (40 uM, 20 uM,
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10 uM, 5 uM and 2,5 uM) of each compound in triplicates. After 72 hours of
treatment, 10% TCA was used to fix the cells. The cells were stained with 0.4%
sulforhodamine B solution. The absorbance values for each sample were determined
at 515 nm in a microplate reader and percent inhibition values were calculated.

2.1.3 Cytotoxicity Assessment with Real-Time Cell Analyzer

Cytotoxicity Assessment with Real-Time Cell Analyzer: RT-CA, xCELLigence
System (Roche Applied Sciences) was used to perform real-time cell analysis. Cells
were cultured on 96-e-plate (Roche Applied Sciences). The proliferation of cells was
monitored for 24 hours in a cell culture incubator at 37 °C. Treatments with AM139
compound were done in triplicates at 3 different concentrations (20 uM, 10 uM and
5 uM). The cell index values were recorded for 72 hours to calculate the cell growth
ratios.

2.1.4 Cell Cycle Analysis

Cells were cultured on 100 mm? culture dishes. After 24 hours of incubation at 37 °C,
they were treated with compounds at IC100 concentrations, or DMSO as control for
48 hours. Then, they were fixed with ice-cold 70% ethanol. MUSE Cell Analyzer was
used to perform cell cycle analysis according to the manufacturer’s recommendations
(Millipore).

2.1.5 Immunofluorescence Assay and Assessment of Cell Morphology

Cells were cultured on coverslips in 6-well plates. After 24 hours of incubation, cells
were treated with the compounds at IC50 concentrations for 72 hours. The
morphologies of live cells were analyzed under phase-contrast microscope at 24, 48
and 72 hours of treatment. They were fixed with 4% paraformaldehyde. After blocking
with 3% BSA, immunofluorescence assay was performed by using 7D3 monoclonal
o-p53 antibody and Alexa-488 conjugated a-mouse (Invitrogen) as the secondary
antibody. Counterstaining was done by Hoechst 33258 (Sigma-Aldrich) and the slides
were mounted on glass by glycerol. The results were examined under fluorescence
microscope.

2.2 Bioinformatics Methodology

2.2.1 Pre-processing of Microarray Data

The qualities of arrays were checked using simpleaffy package available in R (Wilson
& Miller, 2005). Robust Multi-Array Average (RMA) background correction and
quantile normalization of the data were performed using the R-script provided in
Appendix A. The distribution of expression intensities before and after the
normalization for each sample is given in Figure 8.
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Figure 8: The boxplot showmg the d1str1but10n of gene expressmn mtensities before
and after the normalization.

2.2.2  Determination of Differentially Expressed Genes

In order to identify DEGs between HepG2 and HepG2-2.2.15 cells in the presence or
absence of Se, we used limma package (Ritchie et al., 2015) in R programming
language (Appendix A). We organized the design matrix so that it involves both the
cell line (HepG2 or Hep(G2-2.2.15) and Se status (present or absent) information,
separately for each day. The first step was to fit all the data to a linear model which
fully models the systematic part of the data. Each row of the design matrix corresponds
to an array in the experiment each belong to one of the 24 different samples and each
column corresponds to a coefficient with the cell line and Se status information. In
Table 1, the design matrix for only one day was shown for simplicity (8 of the 24 total
arrays) and each sample (each column) includes two arrays due to the replicas.
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Table 1: The design matrix used in limma analysis showing the arrays and the samples
belong to them.

Sample No | HepG2 Se- | HepG2-2.2.15 Se- [ HepG2 Se+ [ HepG2- 2.2.15 Se+
1 0 0 0 1
2 0 0 0 1
3 0 1 0 0
4 0 1 0 0
5 0 0 1 0
6 0 0 1 0
7 1 0 0 0
8 1 0 0 0

In limma analysis, the contrast step, provides the comparison of the fitted coefficients
in as many ways as there are questions to be answered, which is independent of the
number of distinct RNA samples. In line with the design matrix, we designed the
contrast matrix in a specific way to determine the effects of cell line and Se status on
gene expression separately for each day (Table 2);

Se+ HepG2 vs HepG2-2.2.15 = Se+ HepG2 — Se+ HepG2-2.2.15
Se- HepG2 vs HepG2-2.2.15 = Se- HepG2 — Se- HepG2-2.2.15
HepG2 Se- vs Set+ = Se- HepG2 — Se+ HepG2

HepG2-2.2.15 Se- vs Se+ = Se- Hep(G2-2.2.15 — Se+ Hep(G2-2.2.15

el o

Table 2: The contrast matrix used in limma analysis showing the comparisons
performed in each of the 4 analyses.

1st Analysis 2nd Analysis | 3rd Analysis 4th Analysis
Se+ 1 HepG2 vs |Se-1 HepG2 vs |HepG2I1Set+ | HepG2-2.2.151 Se+
HepG2-2.2.15 HepG2-2.2.15 vs. Se- vs. Se-
HepG2 Se- 0 - 1 0
HepG2-
2.2.15 Se- 0 -1 0 -1
HepG2 Se+ 0 0
HepG2-
2.2.15 Se+ -1 0 0
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In our design, the first two comparisons were interested in the identification of the
genes that were differentially expressed between HepG2 and HepG2-2.2.15 cells in
the presence or absence of Se, respectively and named as between cell line
comparisons; while the last two comparisons aimed to answer the question of which
gene expressions were altered within a cell line in the presence or absence of Se for
HepG2 or HepG2-2.2.15 cells respectively and called as within cell line comparisons.
The p-value was limited to values lower than 0.01 while selecting the significant DEG
lists.

The generated DEG list were compared to each other to find the shared DEGs by
drawing venn diagrams. Online Venn Diagrams web-tool by Van de Peer Lab that is
available at http://bioinformatics.psb.ugent.be/webtools/Venn/ was used.

2.2.3  Clustering of Differentially Expressed Genes

Heatmaps are one of the most useful technique for the visualization and clustering of
large datasets. Samples with more similar profiles clustered closer separately from
others with distinct profiles. Firstly, in order to draw heatmaps with our DEG lists, we
calculated Z-score of each gene in the defined DEG lists (Kreyszig, 1979). To calculate
the Z-scores, the average of log2 expression value for each gene were calculated and
subtracted from gene expression value of each individual sample. The calculated
values were then divided by standard deviation values of each gene. heatmaply
package (Galili et al., 2018) in R Programming was used to draw the heatmaps by
default parameters. Hierarchical clustering method was used, and the distance was
computed by Euclidean measure. R script is provided in Appendix A.

2.2.4 DEG Scores

We normalized within cell line comparison result with respect to each other by
assigning each gene a score- called DEG score- according to the change they showed
upon Se-deficiency in comparison of the LIMMA results of the two isogenic cell lines;
as shown in the equations in Figure 9 (Cavga et al., 2019):
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Figure 9: Calculation of DEG scores to normalize comparison results with respect to
each other.

DEG scores have provided the normalization of the results for each DEG relative to
each other which were calculated by the formula provided above to determine the
relative changes between HepG2 and HepG2-2.2.15 within cell line comparison
results. The DEGs with absolute DEG scores higher than 1; which indicates more than
2-fold change were identified. DEG score with value more than 1 is related to
increased response to Se-deficiency in HepG2-2.2.15 cells while DEG score that are
lower than 1 are associated to decreased response in HepG2-2.2.15 compared to
HepG2 cells.

2.2.5 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was performed using
the DEG lists by taking DEG score values as a pre-ranked input for each gene.
Enriched gene sets were searched from either the MSigDB hallmark or GO-Biological
Process data collection using the default “weighted” enrichment statistic parameter
and “meandiv”’ normalization. The MSigDB hallmark gene sets are curated, highly
reliable gene sets since they are composed of genes that show consistent expression
patterns in specific biological pathways based on publications. Enriched gene sets with
a FDR g-values < 0.25 were considered to be significant.

2.2.6  Network Analysis
2.2.6.1 Prize Collecting Steiner Tree

We used Prize Collecting Steiner Tree (PCST) (Tuncbag et al., 2016) approach in
order to identify the interactions through our DEG lists by using the information
provided by human interactome data (Appendix A). For running the approach, we used
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Omics Integrator software’s Forest module to determine the sub-network in our set of
DEGs.

PCST constructs optimum trees from the given DEGs (terminal nodes) by using
human interactome data as a reference to find the shortest path between the nodes. It
is designed to maximize the prize by including most of the genes from the given gene
list taking gene expression differences (log fold change values) as prize and goes
through the nodes of interactome data by taking the edge weight values as cost to find
the shortest path by minimizing the cost.

In order to construct meaningful trees, some parameters have to be optimized first. f3,
o, and p are the input parameters that must be chosen correctly which determine the
number and size of trees, number of hubs, etc. For each DEG list, the optimum values
of those input parameters must be determined separately. Forest-tuner algorithm
(https://github.com/gungorbudak/forest-tuner) was used to find the optimum
parameters which gives trees with higher number of prices and smallest mean degrees
of nodes.

In our analysis, STRING protein-protein interaction database v10 was used to extract
the interactome reference set. In this database, each edge is given a confidence score
between 0 and 1 according to the reliability of the data source. We have chosen the
edges that have confidence scores higher than 0.7. These scores were used to determine
the costs by Omicsintegrator. The network data generated was visualized by
Cytoscape (Shannon, 2003).

2.2.6.2 String

Protein-protein interaction (PPI) networks are powerful tools to define some key
proteins within known networks. The data needed for these networks can be extracted
from databases such as STRING. Some values such as degree of a node and
betweenness centrality might be used to determine biologically important hub
proteins. The degree of a node is the total number of edges linked to that node; so the
higher the degree the more central the protein is (Cavga et al., 2019). The betweenness
centrality of a node shows whether that node acts as a bridge between two other nodes
and higher betweenness centrality values indicate a key role in connecting different
sub-networks. (H. Yu et al., 2007).

In this study, the identified DEG lists were further analyzed to gain more insight about
their biological mechanisms by obtaining experimentally validated PPI information
from STRING database (Jensen et al., 2009). Hub proteins with high degree or
betweenness centrality values were further analyzed.

2.2.7 Correlation Analysis:

In order to evaluate whether the expression level changes of DEGs through our
samples of interest are correlated to that of the genes playing roles in p53-MDM?2
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pathway, we performed Spearman correlation analysis. A matrix was generated for the
DEQG lists vs p53-MDM2 pathway genes and Rho values were calculated for each gene
pair. Rho could be any value between 1 and -1; 1 being 100% positive correlation
while -1 meaning 100% negative correlation between the gene expression values in
samples of interest. p-values showing the significance of the correlation were also
estimated and the values lower than 0.05 was taken as significant.
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CHAPTER 3

RESULTS

Results of this thesis are presented in this chapter. The results of the bioinformatics
methods that were used to analyze the microarray experiment were explained in the
first part. We have used various strategies to interpret the microarray data to propose
27 genes that could be further searched for their potential to be used in the targeted
therapy of HCC.

The remaining part of the chapter focused on experimental data for the testing of
cytotoxicity of p53-MDM2 interaction inhibitor compounds and their mechanisms of
action.

Figure 10 shows the general steps followed in the microarray study; starting from the
experimental setup followed by the computational methods used in its assessment for
the identification of potent biomarkers. Each topic was explained in detail in the
related coming sections.

27



/ HepG2 <+———— Isogenic Cell Lines —— HepG2-2.2.15 \
| | | I

Se+ Se+

! ! ! !

{3) stress A/{:; (‘)
Y
ful P 0)

oV
ell growth Cell death Cell growth Cell growt

DEG Analysis (LIMMA)
Berween cell line comparisons:
1. Se+ [ HepG2 vs HepG2-2.2.15
2. Se- | HepG2 vs HepG2-2.2.15

Within cell line comparisons:
3. HepG2-2.2.15 1 Se- vs Se+
4. HepG2 I Se- vs Se+

Clustering (Heatmaply)
GSEA
Network Analysis (PCST)
Hub proteins (STRING)

Identification of potent/novel genes associated with Se deficiency
tolerance

Deficiency Induced Cell Death in HCC Cells’ Transcriptome Data

28

dmjas [pywawLdxy

Figure 10: Experimental design. HepG2 and HepG2-2.2.15 cells- two isogenic HCC
lines with the difference of HBV genome integration in HepG2-2.2.15 cells- were
grown in the presence or absence of Se to perform transcriptome analysis. The results
were examined by further bioinformatics methods to enlighten the differential
response mechanisms.

3.1 Identification of DEGs by Linear Modelling of the Effect of Selenium-

As mentioned previously, limma is a package used in the determination of DEGS in
the analysis of microarray experiments. A linear model is fitted for each gene. Our
transcriptome wide gene expression analysis result had three independent factors that



affected gene expression levels: 2 cell lines, 2 Se status and 3 days. In order to analyze
the results of such a complex data and determine DEGs that are important for the
tolerance to Se-deficiency dependent oxidative stress, we used limma package.

In this method, two matrices have to be identified: the design matrix provides the
information of different RNA samples used in the analysis and the contrast matrix
allows the coefficients defined by the design matrix to be compared to answer the
biological question of interest. Each column of the contrast matrix corresponds to a
comparison of interest between different RNA samples.

In our study, as explained in methods, four comparisons were performed to answer
different questions separately for 24 hours (D1), 48 hours (D2) and 72 hours (D3): first
two analysis aimed to identify the DEGs between cell lines; HepG2 vs Hep(G2-2.215
cells in the presence or absence of Se, respectively, while the last two analysis have
given the DEGs within each cell line depending on Se status.

Figure 11 shows the live images of HepG2 and HepG2-2.2.15 cells grown in Se+ or
Se- media for 72 hours. Cell confluency at the first 24 hours was comparable for both
cell lines independent of the Se status, showing the Se deficiency effect was not
apparent yet. In the 48" hour, the HepG2 cell numbers in Se- media was lower
compared to Se+ control, while HepG2-2.2.15 cell numbers were similar in both
conditions. The most dramatic effect of Se-deficiency was detected on the third day
and the HepG2 cell numbers decreased dramatically compared to those of Se+ control,
while Hep(G2-2.2.15 cell numbers were comparable in both conditions.

Numbers of DEGs for each condition were identified per comparison respectively as
indicated in Figure 12 and 13. Venn diagrams show the individual or shared DEGs in
different comparison lists separately for D1, D2 and D3. By the first two limma
analyses between cell line comparisons (Figure 12) the DEGs that were only
differentially expressed in Se- HepG2 vs HepG2-2.2.15 and not in Se+ HepG2 vs
HepG2-2.2.15 were further named as ‘Se-deficiency effect genes’ since they were
altered depending on the absence of Se. The shared DEGs in both Se+ and Se-
comparisons were named as ‘HBV-integration effect genes’ in this study (Figure 11),
as their expression differences were independent of the Se status, which is thought to
be about the integration of HBV viral genome.
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HepG2 HepG2-2.2.15

Figure 11: Experimental groups and DEG analysis of HepG2 and HepG2-2.2.15 cell
lines. Live images of HepG2 and HepG2-2.2.15 cells grown in Se+ or Se- media for
72 hours.

Se+ (HepG2 vs 2.2.15) Se- (HepG2 vs 2.2.15)

Figure 12: DEG numbers identified as a result of the between cell line comparisons by
limma analysis. Venn diagrams were drawn in order to indicate the common and
unique DEGs within indicated comparison groups for each day. 2.2.15: HepG2-2.2.15,
D1: 24h, D2: 48h; D3: 72h.

By the last two limma analyses within each cell line comparisons (Figure 13) the
expression of GPX and SEPW1, the two selenoproteins, decreased in the absence of
Se in both cell lines. This could be expected due to the direct dependence of their
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expression on the presence of Se. The DEGs that were not shared in common were
named as ‘Se-deficiency effect genes’ and further examined since they were directly
related to the different reactions each cell line gave to the deficiency of Se.

Within Cell Line Comparison

HepG2 (Set vs Se-) 2.2.15 (Se+ vs Se-)

Figure 13: DEG numbers identified as a result of the within cell line comparisons by
limma analysis. Venn diagrams were drawn in order to indicate the common and
unique DEGs within indicated comparison groups for each day. 2.2.15: HepG2-2.2.15,
D1: 24h, D2: 48h; D3: 72h.

3.2 Clustering Analysis of Between Cell Line Comparison DEGs under Selenium-
Deficiency

For between cell line comparisons, the z-scores for expressions of the Se-deficiency
effect genes in each sample were calculated by the method explained in the Materials
and Methods chapter and used to draw heat map that clusters sample all together for
D1, D2, and D3 data (Figure 14). As expected, HepG2 and HepG2-2.2.15 cells were
clustered in two distinct groups due to their separate DEG expression profiles.
PPAP2A, HOXDI1, and CLYBL genes were found to be the most DEGs between the
two cell lines because of the smallest p-values they have. HepG2-2.2.15 Se+ and Se-
samples were clustered together in a day-wise fashion, while HepG2 Se+ and Se-
samples were clustered in two distinct groups in a Se-status-wise fashion especially
when the 2" and 3" day data is taken into consideration. This might be an indication
of a more dramatic change in the gene expression profiles of HepG2 cells occur with
respect to Se-deficiency; while HepG2-2.2.15 cells have similar DEG expression
levels in both Se status.
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Figure 14: Heat map drawn with z-scores calculated for the Se-deficiency effect gene
expression values.

A similar clustering was performed for the HBV-integration effect genes. HepG2 and
HepG2-2.2.15 cells were clustered separately again; but this time both cell lines were
clustered in a day-wise fashion within themselves (Figure 15). FGF13, GPC3 and
MAP7D2 genes were identified as the DEGs with the smallest p-values between
HepG2 and HepG2-2.2.15.
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Figure 15: Heat map drawn with the z-scores calculated for the HBV-integration effect
gene expression values.

The same DEG list was used to draw heat maps for the expression levels of 8 different
cell lines taken from CCLE results in order to test whether the clustering of these cell
lines for the expression levels of HBV-integration effect DEGs are dependent on the
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presence of HBV in their genome. Table 3 indicates the HBV integration status of
these cell lines as well as their Se-deficiency tolerance. Six of these HCC cell lines
have HBV genomic integration and were found to be resistant to Se-deficiency
dependent oxidative stress (SNU182, SNU475, SNU423, SNU387, SNU449 and
PLC.PRF.5) in a previous study (Irmak et al., 2003)) while two of them (HepG2 and
HUH7) were known to be virus-free and sensitive to Se-deficiency dependent
oxidative stress.

Table 3: HBV-integration and Se-deficiency tolerance conditions of 8 cell lines were
depicted in the table.

Cell Line | HBV-Integration Se-Deficiency Tolerance
SNU182 + +
SNU449 + +
SNU423 + +
SNU387 + +
SNU182 + +
PLC/PRF/5 + +
HUH7 - -
HEPG2 - -

Dendrograms showed clustering of the two Se-deficiency sensitive cell lines together;
distinctly from the other 6 cell lines further supporting the HBV-integration effect
hypothesis stating that differential expression of these genes was indeed related to the
HBYV genome integration independent of the cell’s Se status. (Figure 16)

Gene

ST 0P o

Figure 16: Heat map drawn with Z scores of HBV-integration effect genes calculated
for the expression levels of 8 different cell lines taken from CCLE results.
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3.3 GSEA of Isogenic HepG2 and HepG2-2.2.15 Cells

With the within cell line comparison results, we have identified the DEG lists for the
response of the two cell lines to Se-deficiency separately; so we got the lists of DEGs
whose expression levels were altered in Se- condition compared to that in Se+ control
for each cell line. In order to combine these separate results and determine the
differential response of the two isogenic cell lines to Se-deficiency with respect to each
other we have calculated DEG scores (Cavga et al., 2019) as explained in methods
(Figure 17a). DEG scores were used to determine the enriched pathways by GSEA;
pathways enriched in lists with positive DEG scores (DEG scores > 1) indicate that
the relevant genes were relatively up-regulated in HepG2-2.2.15 when normalized to
HepG2 cells within Se- vs Se+ comparisons. Accordingly, the activities of these
pathways were higher in HepG2-2.2.15 cells in response to Se-deficiency. In contrast,
pathways enriched in lists with negative DEG scores (DEG scores < 1) indicate a lower
activity in HepG2-2.2.15 cells in response to Se-deficiency compared to HepG2.

GSEA results have revealed that the relatively up-regulated genes in HepG2-2.2.15
cells were found to be more related to DNA-Repair, G2M checkpoint, Oxidation
Reduction and MTORCI signaling pathways, which might be key pathways for the
acquired tolerance gained by HepG2-2.2.15 cells to Se-deficiency dependent oxidative
stress as they all seem to have linked to survival mechanisms. The enriched pathways
in the DEG lists with the DEG scores higher than 0, were found to be also related to
stress response, repair mechanisms and cell cycle supporting the previous finding
(Table 4). On the contrary, the relatively down-regulated genes in HepG2-2.2.15 when
normalized to those in HepG2 were found to be enriched in IL2-STATS Signaling
pathway, which is known to have functions related to apoptosis (Longmore et al.,
1998) and might indicate lower apoptotic phenotype in HepG2-2.2.15 comparison
relative to HepG2 in comparison. The same DEG lists were further used to generate a
network of predicted associations between proteins of interest by STRING, and
enriched pathways found on this network was consistent with GSEA results (Figure
17Db).
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Figure 17: Enrichment results of within cell line comparison DEG list (a) DEG scores
were given for each gene for Day 3 according to the indicated formula and the GSEA
was performed to find the enriched Hallmark pathways with their enrichment scores
(b) the STRING was used to perform pathway analysis and to find the enriched
pathways. ES: enrichment score, NOM p-val: nominal p value, FDR: false discovery

rate.
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Table 4: DEG scores were given for each gene in Day 3 and the GSEA was performed
to find the enriched GO BP_pathways with their enrichment scores.

NOM| FDR
NAME SIZE | ES |p-val | g-val
CELL CYCLE 156/ 0.49  0.00 0.00
DNA DEPENDENT DNA REPLICATION 40[ 0.64 0.000 0.00
CELL CYCLE PHASE TRANSITION 63/ 0.57, 0.000 0.00
DNA REPLICATION 51/ 0.59] 0.00 0.00
CELL CYCLE PROCESS 125/ 0.50 0.000 0.00
CELL CYCLE G1 S PHASE TRANSITION 32/ 0.65 0.000 0.00
MITOTIC CELL CYCLE 96/ 0.50 0.000 0.00
DNA METABOLIC PROCESS 90/ 0.51] 0.000 0.00
CELLULAR RESPONSE TO DNA DAMAGE STIMULUS 72/ 0.50 0.000 0.00
DNA REPLICATION INITIATION 17,0.74 0.000 0.00
REGULATION OF CELL CYCLE PHASE TRANSITION 41[ 0.57 0.000 0.00
CELL CYCLE DNA REPLICATION 23/ 0.63] 0.000 0.00
REGULATION OF CELL CYCLE 89/ 0.45 0.00 0.00
REGULATION OF MITOTIC CELL CYCLE 52/ 0.49] 0.00 0.00
DNA REPAIR 56/ 0.47] 0.00 0.00
POSITIVE REGULATION OF MITOTIC CELL CYCLE 18/ 0.62] 0.000 0.00
TELOMERE ORGANIZATION 22/ 0.59 0.000 0.00
INUCLEAR DNA REPLICATION 21/ 0.60 0.000 0.00
REGULATION OF CELL CYCLE PROCESS 68 0.45 0.000 0.00
POSITIVE REGULATION OF CELL CYCLE PROCESS 29/ 0.54 0.000 0.00
POSITIVE REGULATION OF CELL CYCLE PHASE
TRANSITION 15/ 0.66. 0.000 0.00
POSITIVE REGULATION OF CELL CYCLE 35/0.50 0.000 0.00
CHROMOSOME ORGANIZATION 106/ 0.40, 0.00 0.00
REGULATION OF DNA REPLICATION 17, 0.60 0.000 0.00
CELL DIVISION 57/ 0.43 0.00 0.00
INEGATIVE REGULATION OF CELL CYCLE 47, 0.45 0.000 0.00
ORGANELLE LOCALIZATION 28 0.51] 0.000 0.01
RESPONSE TO RADIATION 32 0.50 0.000 0.01
SIGNAL TRANSDUCTION BY P53 CLASS MEDIATOR 22/ 0.55 0.000 0.01
CELL CYCLE G2 M PHASE TRANSITION 25/ 0.521 0.000 0.01
INEGATIVE REGULATION OF CELL CYCLE PHASE
TRANSITION 22/ 0.54 0.00 0.01
ORGANELLE FISSION 500 0.43 0.00 0.01
DNA GEOMETRIC CHANGE 17, 0.57, 0.000 0.01
INEGATIVE REGULATION OF CELL CYCLE PROCESS 30/ 0.48 0.00 0.01
ESTABLISHMENT OF ORGANELLE LOCALIZATION 23/ 0.51] 0.00 0.01
DNA INTEGRITY CHECKPOINT 18 0.56 0.000 0.01
CHROMOSOME SEGREGATION 35/ 0.45 0.000 0.02
REGULATION OF CELL CYCLE G2 M PHASE TRANSITION 211 0.521 0.000 0.02
DNA BIOSYNTHETIC PROCESS 19/ 0.53]  0.000 0.02
IANATOMICAL STRUCTURE HOMEOSTASIS 35/ 0.45 0.000 0.02
ORGANIC ACID METABOLIC PROCESS 42/ 0.43] 0.000 0.02
DOUBLE STRAND BREAK REPAIR 26/ 0.47, 0.00] 0.03
RECOMBINATIONAL REPAIR 17, 0.54 0.00 0.03
CELLULAR RESPONSE TO ENDOGENOUS STIMULUS 811 0.36 0.00] 0.03
OXIDATION REDUCTION PROCESS 57,0.39 0.000 0.03
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3.4 Pathway Analysis of Selenium-Deficiency Dependent Differentially Expressed
Genes in Isogenic HCC Cell Lines

PCST algorithm was used to construct trees for Se-deficiency effect genes by taking
STRING as the reference dataset (Figure 18-20). PCST constructs optimum trees from
the given DEGs (terminal nodes) by using human interactome data as a reference to
find the shortest path between the nodes. The Steiner nodes were determined by the
algorithm (shown by diamond in the figures) and the nodes that have high betweenness
centrality values were identified in order to investigate in more detail (biggest nodes
in each tree) since they might play some key roles considering their connecting
positions between different branches of the tree. Most of the genes with high
betweenness centrality (both DEGs and Steiner nodes) were found to have roles related
to oxidative stress response either with impacts in oxidative stress dependent apoptosis
or antioxidant pathways (Figure 18-20).

Figure 18 shows the tree generated with the D1 data. FOXA1 an oxidoreductase, which
has a proapoptotic role and CYP7A1 another oxidoreductase whose over expression
was shown to decrease oxidative stress in mice (H. Liu et al., 2016) were the DEGs
with high betweenness centrality values. ONECUT1 known to have roles in cell cycle
regulation and PITX2 involved in oxidative stress response were detected as Steiner
nodes, which are not differentially expressed but might be critical in the differential
response due to their connecting positions between different branches of the tree.
(lizuka et al., 2003; Strungaru et al., 2011).
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Figure 18: Network constructed by PCST algorithm for acquired HepG2 vs HepG2-
2.2.15 D1. STRING database was used as the reference database. Circles indicate the
terminal nodes and diamonds indicate the Steiner nodes. Node colors indicate
expression level difference of each gene between cell lines, green and red indicating
negative and positive fold changes respectively.

In D2 results, the DEGs TXNRDI1 and ALDHIL2 and the Steiner nodes ACLY,
TXNIP, SCD5, MTR and TXNDC17 were the genes with the highest betweenness
centrality values (Figure 19). They were all shown to be exhibiting oxidative stress
and redox homeostasis related functions; the decreased expression of them other than
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TXNIP was found to be associated to increased ROS levels resulting in oxidative
stress.
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Figure 19: Network constructed by PCST algorithm for acquired HepG2 vs HepG2-
2.2.15 D2. STRING database was used as the reference database. Circles indicate the
terminal nodes and diamonds indicate the Steiner nodes. Node colors indicate
expression level difference of each gene between cell lines, green and red indicating
negative and positive fold changes respectively.

In D3 results, the Steiner nodes with high betweenness centrality values included
LSM4 that is associated stress response and CNBP, DMPK, QDPR with antioxidant
functions (Figure 20). This has supported the idea that these DEGS could be the key
elements in the acquired tolerance gained by Hep(G2-2.2.15 cells to Se-deficiency
dependent oxidative stress.
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Figure 20: Network constructed by PCST algorithm for acquired HepG2 vs HepG2-
2.2.15 Day 3. STRING database was used as the reference database. Circles indicate
the terminal nodes and diamonds indicate the Steiner nodes. Node colors indicate
expression level difference of each gene between cell lines, green and red indicating
negative and positive fold changes respectively.

3.5 Definition and Clinical Significance of Selected Genes Related with Oxidative
Stress Resistance

In this thesis study, various bioinformatics approaches were used to determine
potentially important biomarkers that have functions in oxidative stress resistance.
Overall, all the genes that were defined to be important in our study by different
analysis methods were summarized in Table 5 and the extended list is included in the
Appendix. 27 Genes were selected based on within or between cell line comparisons
that were associated with either Se or HBV effect. While most of the genes were
previously identified in HCC (17 genes) and oxidative stress (20 genes), HOXD1 and
CLYBL are proposed to be critical for the first time by this study.

Fifteen DEGs with high betweenness centrality values were identified by the PCST
analysis for the between cell line comparison results, and eleven of these genes were
Steiner nodes which were not differentially expressed but were determined to be on
key positions on pathways that might have effects on the expression of the determined
DEGs having indirect effects on differential response. With the GSEA, six DEGs
(DUT, POLD3, E2F2, GINS2, PIK3R3, TMEMY97) as a result of within cell line
comparisons were determined to be key elements for the Se effect according to their
highest enrichment scores. Three genes from each HBV and Se effect DEGs were
selected from the heatmap analysis results with the smallest p-values that have the
most significant impact on the differential response to Se-deficiency between the
isogenic HepG2 and HepG2-2.2.15 cell lines.
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Table 5: Genes identified by within or between cell line comparisons related with either
Se or cell line (HBV) effect. The associations of each gene with oxidative stress and/or
HCC in previous studies were indicated. Se: Selenium-deficiency effect, HBV: HBV-
integration effect, BCL: Between cell line, WCL: Within cell line, (E): Existing DEG,
(S): Steiner node, HM: Heatmap, OS: Oxidative stress, r: Reported.

Gene Effect | Comparison | Analysis |OS |HCC |Literature

(L. Song et al., 2009;
FOXA1 Se BCL PCST (E) |r r H. Zhang et al., n.d.)
CYP7A1 |Se BCL PCST (E) |r Liu et al. (2016)
ONECUTI |Se BCL PCST (S) r (lizuka et al., 2003)

(Archer et al., 2010;
PITX2 Se BCL PCST (S) |r r Strungaru et al,

2011)

(Kiermayer et al.,
TXNRDI |Se BCL PCST (E) |r r 2007; Lee et al.,

2019)

(Lee et al., 2017,
ALDHIL2 |Se BCL PCST (E) |r r Sarret et al., 2019)

(Migita et al., 2013;
ACLY Se BCL PCST (S) |r r Pope et al., 2019)
TXNIP Se BCL PCST (S) |r (Zhou & Chng, 2013)
SCD5 Se BCL PCST (S) |r r (G. L Yuetal., 2018)
MTR Se BCL PCST (S) |r (Sietal, 2016)

(Liyanage et al.,
TXNDCI17 |Se BCL PCST (S) |r

2019)

(L. Chen & Liu,
LSM4 Se BCL PCST (S) |r 2017)

(de Peralta et al,
CNBP Se BCL PCST (S) |r 2016)
DMPK Se BCL PCST (S) |r (Pantic et al., 2013)
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Table 5: Genes identified by within or between cell line comparisons related with either
Se or cell line (HBV) effect. The associations of each gene with oxidative stress and/or
HCC in previous studies were indicated. Se: Selenium-deficiency effect, HBV: HBV-
integration effect, BCL: Between cell line, WCL: Within cell line, (E): Existing DEG,
(S): Steiner node, HM: Heatmap, OS: Oxidative stress, r: Reported. ( continued )

(Gu et al, 2017,
QDPR Se BCL PCST (S) |r r Nwosu et al., 2017)
DUT Se WCL GSEA r (Takatori et al., 2010)
(Jiang et al., 2019;
POLD3 Se WCL GSEA r r Tan et al., 2020)
(Castillo et al., 2015;
E2F2 Se WCL GSEA r r Y.-L. Huang et al.,
2019)
(Lian et al., 2018; C.
GINS2 Se WCL GSEA r r Liu et al., 2019)
(Engedal et al., 2018;
PIK3R3 Se WCL GSEA r r Tbrahim et al., 2018)
(J.-H. Wang et al,
TMEM97 |Se WCL GSEA r 2020)
(Bublik et al., 2017;
FGF13 HBV |BCL HM r r Grose et al., 2014)
(Akutsu, 2010; Guo
GPC3 HBV |BCL HM r et al., 2020)
MAP7D2 |HBV |BCL HM r (Nishida et al., 2014)
(Jenkins et al., 2012;
PPAP2A —|Se BCL HM r Nwosu et al., 2017)
HOXD1 Se BCL HM
CLYBL Se BCL HM

Finally, to find out the clinical relevance of the selected genes; Kaplan Meier Plots
were drawn for the liver cancer RNA-seq results (Figure 21). The expression levels of
16 out of 27 genes were found to be related to survival time of the HCC patients.
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Figure 21:Kaplan Meier plots were generated for selected DEGs in HCC patients in
liver cancer RNA-seq dataset.

The expression levels of these genes in our 12 samples were used to generate
expression graphs (Figure 22). The pattern of differential expression is apparent when
these graphs are examined in parallel to the methods used. For instance, for the
expression of genes identified by between cell line comparisons, the expression level
difference between six HepG2 samples and six HepG2-2.2.15 samples could clearly
be seen. Similarly, the expression levels of genes identified by within cell line
comparison have a different expression pattern and do not change depending on the
cell line but Se status. For the expression of Steiner node genes identified by PCTS
algorithm, the patterns seem to be more irregular, since their expression is not
differentially expressed in compared samples.
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Figure 22: Log2 expression values of the identified genes in our 12 different samples.

3.6 Correlation Analysis of the Identified DEGs with pS3-MDM2 Pathway Gene
Expression Values

In previous studies, FOXA1 gene amplification and alterations in expression levels in
various cancer types including breast, prostate, lung and liver cancers were studied and
it was also proposed as potential target for cancer therapy in parallel to our findings
(Bernardo et al.,, 2013; Rahman et al., 2020; Y. Wang et al, 2019). As already
explained in the Introduction chapter, FOXA1 is also binds to DNA to regulate the
transcription of various genes including P53 and MDM2 (Swetzig et al., 2016). By
taking this information into consideration, we tried to understand whether there is any
association between p53-MDM2 pathway genes and our DEGs of interest.
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We first used STRING database to test whether our DEGs of interest have any Protein-
Protein interactions with P53 and MDM2 proteins. Figure 23 shows the generated
network and the interactions between all proteins. TP53 protein was found to be
interacting with 7 of the genes that were identified in the first part of our study,
FOXA1, CNBP, TXNIP, FGF13, TXNRDI1, E2F2 and DUT.
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Figure 23: Network generated by STRING showing the interactions between the genes
we identified in the first part of the study and p53-MDM2 genes.

We than extended the p53-MDM?2 pathway list to include other genes that have
regulatory roles in that pathway (Nag et al., 2013) and tested the presence of any
potential correlations between the expression levels of these genes and our DEGs by
analysing the results of our microarray experiment. Many significant correlations were
detected between the two lists, including FOXA1 and p53-MDM2 expression levels
which is in parallel with the previous findings. Table 6 and Table 7 show the Rho and
p values estimated by Spearman correlation analysis, respectively. The closer the Rho
values to +/- 1, the more correlated the gene expression levels between the relevant
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genes. The significance of the correlation was further shown by the estimates p-values
(Table 7). TP53 and MDM?2 gene expressions were found to be correlated to the
expression of 12 and 8 genes from our DEG lists, respectively; while FOXA1 from
our list was found to have correlated expression with 10 of the genes that functions in
p53-MDM2 pathway. In general, 21 of our 27 DEGs were found to have correlated
expression to at least 5 of the genes in p53-MDM2 pathway.

Depending on the aforementioned association, which is also supported by the previous
studies, targeting p53-MDM?2 mechanism might be a potential strategy for the
treatment of HCC patients. With this motivation we have tested the cytotoxicity of 9
different p53-MDM?2 interaction inhibitor compounds on 4 different HCC cell lines
and the mechanisms behind their cytotoxic effects. The remaining sections will focus
on the results of this study.
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3.7 Testing the Cytotoxic Effects of the PS3-MDM2 Interaction Inhibitors

The cytotoxic effects of all compounds were initially tested by Sulforhodamine B
(SRB) assay on 4 HCC cell lines carrying various pS3 mutations as explained in the
Introduction part and given in the Table 8.

Table 8: p53 mutation statuses of HCC cell lines.

Cell Line [pS53 mutation status

Mahlavu  |R249S

Huh?7 Y220C

HepG2 pS3-wt

Hep3B pS53-null

Percent cell growth inhibition values were calculated to determine IC50 values (Table
9). Although all 9 compounds exhibited cytotoxic effects on cell lines, 2 of them,
AM137 and AM139 were chosen to be further studied; due to their significantly lower
IC50 values in HepG2 cell line, which is known to have wild type p53 expression.

Table 9: Cytotoxic bioactivities (IC50 uM) of compounds in for primary liver cancer
cells.

HepG2 Huh?7 Hep3B Mahlavu
AMI118 5.1 7.6 6.2 3.6
AMI19 6.2 8.6 7.8 5.6
AMI129 14.8 10.1 12.7 15.1
AMI130 4.7 8.5 5.7 3.1
AM136 6.7 8.6 9.2 4.1
AM137 2.3 9.5 5.5 5.0
AM139 0.4 8.2 6.6 5.8
AM63c 6.8 5.3 7.6 1.2
AM87a 10.9 11.3 10.5 5.5

SRB cytotoxicity assay was done in triplicates R2 = 0.8
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The cytotoxic activity of AM139 was also monitored by Real-Time cell analyser;
treatment of which was shown to result in complete inhibition of growth for all cell
lines at 20 uM, while percent inhibition values decrease as the concentration values
decrease (Figure 24). These result show that all compounds have cytotoxic activities
on all 4 cell lines, among which AM137 and AM139 showing the most cytotoxic
activities.
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Figure 24: Cell index vs time graphs of HepG2 (A) Huh7 (B) Hep3B (C) and Mahlavu
(D) cells obtained from real time cell analyzer; which were treated with AM139 at 3
different concentrations; 20.00 uM (Blue), 10.00 uM (Red), 5.00 uM (Green) or
DMSO (Purple) for 72 hours.

3.8 Determination of the Cytotoxicity Mechanism

Next, further analyses were performed in order to understand the underlying
mechanisms behind these cytotoxic effects. It is known that cell morphology is an
indicator of health status of cells; so we examined the morphology differences of cells
after the treatment with AM137, AM139 or DMSO control (Figure 25). From these
images, the changes in cell shapes after the treatment with AM137 and AM139 when
compared to healthy DMSO controls could clearly be seen. The small and round
shaped cells in treated samples could be an indicator of presence of apoptotic cells.
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Figure 25: Morphologic changes in Mahlavu, Huh7, HepG2 and Hep3B cells in the
presence of AM137 or AM139 (IC50) or DMSO control for 48 hours. All images were
captured at 40x under an inverted phase-contrast microscope.

In order to further test this hypothesis, cell cycle analysis was performed (Figure 26)
and percent cell population in each cell cycle stage was calculated for all samples.
There was significant increase in cell percentages in sub-Glstage for especially Huh7
and Hep3B cell lines which shows that treatment with these compounds initiates
apoptotic process.
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Figure 26: Histograms of cell cycle analysis results of HepG2 (A) Huh7 (B) Hep3B
(C) and Mahlavu (D) cells after the treatment of AM137, AM139 (IC100 uM) or
DMSO control for 48 hours. Percentages of sub-G1, G1, S, G2/M are given for each
condition.

Previously, it was shown that Mdm2 inhibits p53 activity by initiating its nuclear
export to stimulate protosomal degradation (Davis et al., 2013). To test whether
treatment with AM137 and AM139 inhibits Mdm2-p53 binding, therefore preventing
nuclear export and degradation of p53, we performed immunofluorescence analysis to
determine the subcellular localization of p53 protein in treated and control cells
(Figure 27). The results of immunofluorescence analysis revealed potential nuclear
localization of p53 after treatment with compounds, when compared to the localization
of p53 protein in both cytosol and nucleus in DMSO control cells. Since it is p53-null
cell line, no p53 stain was detected in Hep3B cells, as expected. The nuclear
localization of p53 after treatment will further be studied by confocal microscopy.
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Figure 27: Immunofluorescence (bottom) and Hoechst (top) staining of HepG2 (A)
Huh7 (B) Mahlavu (C) and Hep3B (D) cells after the treatment of AM137 (4g),
AM139 (41) (IC50 uM) or DMSO control for 48 hours to determine the subcellular
localization of p53 protein in green fluorescence. Hoechst dye (blue) stains DNA and
therefore nucleus. All images were captured at 40x under fluorescence microscope.
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CHAPTER 4

DISCUSSION

In this thesis study, the aim was to determine novel biomarkers that could be used in the
diagnosis and treatment of HCC and to test the potential cytotoxic effects of novel
compounds on HCC cell lines. With this aim, Se deficiency-dependent oxidative stress
related gene expression profiles of two isogenic HCC cell lines varying with respect to
their HBV integration status were analyzed to identify genes that could be targeted as
novel diagnostic and therapeutic strategies. Then the effects of a novel P53-MDM?2
interaction inhibitor was tested as potential therapeutics. This chapters discuss the results
obtained by the wet-lab and bioinformatics analysis methods.

4.1 The Examination of the Differentially Expressed Gene Lists

The results of an Affymetrix expression array were analyzed and the DEG lists were
identified using limma analysis. DEG lists were further sub-categorized as ‘Selenium-
deficiency effect genes’ or ‘HBV-integration effect genes’.

4.1.1 The Comparison of Statistical Methods: t-test vs limma

t-test is one of the most commonly used statistical methods; but it could lead to some false
results depending on the variance distribution of the samples and the sample size. When
it is the subject of a microarray analysis, the use of t-test might give deceptive results
because the genes with low variance values might distort variance estimates and could
have large t-statistics to be falsely chosen as differentially expressed. Moreover, t-test is
not the most suitable option when the sample sizes are low (Jeanmougin et al., 2010).

It was previously shown in various studies that limma gives better results in the
identification of true DEGs, especially for the small sample sizes. This power of limma
comes from the empirical Bayes estimate used in the calculation of a moderate standard
deviation which takes the distribution of all the standard deviations into account
(Jeanmougin et al., 2010). This feature of limma make it one of the most optimum statistical
method to be used in our study when our small sample size was taken into consideration.
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4.1.2 The Overall Interpretation of the Differentially Expressed Gene Lists

The DEGs were sub-categorized either as ‘HBV-integration effects genes’ or ‘Se-
deficiency effect genes’ depending on being shared in HepG2 vs HepG2-2.2.15
comparisons for both Se+ and Se- conditions or only found in Se- comparison,
respectively. The shared DEGs were thought to be related to HBV-integration effect since
they were differentially expressed independent of the Se status. Our CCLE clustering
results verified these DEGs were as a result of HBV-integration effect, since the two cell
lines lacking HBV were clustered together distinctly from the cell lines that had HBV
genomic integration when the expression levels of ‘HBV-integration effect genes’ were
considered. The expression levels of some of the genes from our HBV-integration effect
gene list were also previously shown to be altered depending on HBV infection by various
studies. (Jagya et al., 2014; Lamontagne et al., 2016). GSE52755 dataset in GEO database
analyze the gene expression changes in human liver cells after HBV infection, so
comparing our HBV-integration effect DEGs with their findings were also enlightening
to further verify the association between HBV-integration and alterations in the expression
of these genes; 34 common genes (KLHL14, GDA, DPYD, IL6R, SETBP1, TUBB2B,
FOXN3, GPC3, RBMSI1, GPR137B, RPS23, PLP2, RBM23, BHMT2, HOXAI10,
FBXL21, LGI1, NR5A2, SLC38A4, CYB561, SPP1, DKK4, L3MBTL4, HABP2,
SEMA4F, PRTG, DEFBI1, GSTO2, STXBP6, VNNI, RBM47, CTDSPL, ARLIS,
NME23) were identified; but the significance of this association have to be verified by
statistical methods.

We found that HBV integration had a larger effect on differential gene expression
compared to that of Se deficiency when the DEG numbers were taken into consideration.
The most dramatic Se-deficiency effect was seen on the second day which might be due
to the use of Se from the cellular stocks in the first 24 hours and the deprivation occurs
afterwards altering the gene expression levels.

For the within cell line comparisons, GPX and SEPW1 expressions was lost in both cell
lines under Se-deficiency; which was an expected result as the dependence of the synthesis
of these two selenoproteins on the presence of Se is considered. There was no other shared
DEGs between HepG2 and Hep(G2-2.2.15 within cell line comparisons, which might be
an indicator of difference between the reactions of these two cell lines to Se-deficiency.

4.2 The Determination of Key Genes in the Differential Response to Selenium
Deficiency

The genes thought to play key roles in the differential response to Se deficiency-dependent
oxidative stress were determined by clustering, GSEA as well as network analysis
methods and 27 genes were identified to be the most significant ones and can provide
important leads in further studies of HCC diagnosis and therapy.

Protein-protein interaction (PPI) networks are powerful tools to define some key proteins
within known networks. Some values such as degree of a node and betweenness centrality
might be used to determine biologically important hub proteins (H. Yu et al., 2007).
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Fifteen DEGs with high betweenness centrality values were identified by the PCST
analysis for the between cell line comparison results, and eleven of the genes were Steiner
nodes which were not differentially expressed but were determined to be on key positions
on pathways that might have effects on the expression of the determined DEGs having
indirect effects on differential response. Previous studies have shown that such hidden
nodes are able to connect the pathways and also indicate cross talks (S. -s. C. Huang &
Fraenkel, 2009). Fourteen of the genes identified by PCST were previously shown to have
functions in oxidative stress response and seven of those were also known to be related to
HCC (Table 5). This suggest that our statistical methodology has revealed cancer
pathways that could be related with hepatocarcinogenesis and extrinsic factors.

With the GSEA, six DEGs (DUT, POLD3, E2F2, GINS2, PIK3R3, TMEMO97) as a result
of within cell line comparisons were determined to be key elements for the Se effect and
four (POLD3, E2F2, GINS2, PIK3R3) were previously shown to have oxidative stress
and hepatocellular carcinogenesis related functions (Table 5).

Three genes from each HBV and Se effect DEGs were selected from the heatmap analysis
results with the smallest p-values that have the most significant impact on the differential
response to Se deficiency between the isogenic HepG2 and HepG2-2.2.15 cell lines.
PPAP2A, one of the three genes with lowest p-values was determined to have effects on
cell proliferation a previous study but the other two, HOXD1 and CLYBL genes were not
associated with any oxidative stress or hepatocellular carcinogenesis related function but
the association of HOXD1 with ovarian cancer was previously reported (Table 5).

GSEA results also indicated that the expression of 15 of those genes were regulated by
different combinations of six transcription factors as shown in Table 10. HSD17B8
overexpression was found to be associated with endometrial and breast cancers; so
proposed as potential target in previous studies (Cornel et al., 2012; D. Song et al., 2006).
ZBTBS genes’ role as transcriptional repressor of p21, which is a cell cycle arrest regulator
makes it a stimulator of cell cycle; so known to possess a proto-oncogenic role (Koh et
al., 2009). TFCP2 is another gene with proto-oncogenic roles in HCC, pancreatic and
breast cancers (Kotarba et al., 2018) while the overexpression of LYF1 transcription factor
was shown to be associated to the prevention of hepatocarcinogenesis (Huo et al., 2017).
E2F2 is another transcription factor whose roles in HCC was studied. The overexpression
of E2F2 results in HCC progression through affecting various pathways such as cell cycle,
DNA replication and p53 signaling thus it was proposed as promising target for HCC
(Zeng et al., 2020). In line with our findings and the previous studies, these transcription
factors might be the main targets that should be further investigated for their potential in
novel diagnostics and therapeutic strategies.
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Table 10: The common transcription factors that were associated with the regulation of
genes-of interest identified. r: reported.

GENE NAME |HSD17B8 |CHX10 |[ZBTBS5 |TFCP2 |LYF1 |E2F2
FOXAI1 r r r
CYP7A1
ONECUTI
PITX2 r r r r
TXNRDI
ALDHIL2
ACLY
TXNIP r
SCD5
MTR r r
TXNDCI17 r
LSM4
CNBP
DMPK r
QDPR
DUT
POLD3
E2F2
GINS2
PIK3R3 r r
TMEM97 r
FGF13 r
GPC3 r r
MAP7D2
PPAP2A r
HOXDI
CLYBL
4.3 The Association of the Identified Key Genes in the Differential Response to
Selenium-Deficiency With Their Clinical Relevance

Lon T e B e B )

The expression of 16 genes among 27 genes were found to be significantly related to
clinical results; the lower expression of ACLY, LSM4, PITX2, TXNRDI, POLD3,
GINS2, FGF13, E2F2 and higher expression of ALDHIL2, CYP7A1, QDPR, TXNIIP,
PPAP2A, PIK3R3, H2BFXP, CLYBL genes were found to have significant effects on
liver cancer patient life spans as shown by the Kaplan Meier Plots. This suggests that
especially these 16 genes might be important in the differential response to ROS —
dependent effects and should be further searched for their roles in oxidative stress defense
mechanisms.
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Among the 16 genes associated with significant clinical results, FGF13 gene was the only
DEG proposed as ‘HBV-integration effect gene’ in our study. When we separated the
effect of expression of FGF13 on the life span of liver cancer patients either dependent on
HBYV or not, we found that the effect of gene was only significant for the life span of HBV -
dependent liver cancer patients and not for the ones that lack HBV (Appendix C). This
might further support the proposed association of this gene to HBV-integration effect.

4.4 The Impact of the Identified Genes

The identification of genes that could be used to predict the prognosis of the HCC patient
or lead to the discovery of new therapeutic strategy is important since cancer cells find
alternative pathways to compensate the effects of targeted therapies that are currently
being used. For this reason, the identification of novel biomarkers that play key roles on
those compensatory pathways is very critical. The use of computational methods to
analyze the regulation of gene expression values in cancer cells is a powerful guide to
develop novel targeted-therapeutic strategies.

The outputs of this study emphasize the role of DEGs regardless of Se status and as a
result of HBV-integration effect as potential targets in HBV-dependent HCC treatments.
This information might be important since approximately half of the HCC incidences are
known to be dependent on viral infection. HBV virus encodes oncogenic HBx protein
after infecting cells and the expression of HBx is related to many outcomes by altering
host gene expressions to modulate proliferative mechanisms in hepatocytes and stimulate
viral replication. WU HBX TARGETS 3 UP gene set is found in the Molecular
Signatures Database that consist of 18 genes up-regulated by expression of HBx protein
both in SK-Hep-1 cells and primary hepatocytes (gene list provided in Appendix D, Table
17). In GSEA, this list was found to be enriched in HepG2-2.2.15 compared to HepG2
cells that were grown in the presence of Se (Appendix D, Figure 29) indicating the active
role of HBx protein in HepG2-2.2.15 cells. Through these genes, 5 of them (CCNI,
CDKN3, MYB, PDCD2 and SLC2AS5) were identified to be either directly present or
known to be interacting with the DEGS in our extended list (Appendix B) suggesting the
importance of HBx dependent gene expression alterations in oxidative stress resistance
consistently with our findings.

Moreover, the effects of Se rich diet on the treatment of HCC patients might further be
studied to reveal genes identified as potential drivers of Se deficiency effect in this study.
The role of dietary Se in carcinogenesis is a controversial issue. There are various studies
focusing on anti-cancer roles of Se through several mechanisms, including selenoproteins’
antioxidant functions, tumor cell growth inhibitions, stimulatory roles in cell cycle and
apoptosis, and effect on DNA repair. However, another study showed the effect of dietary
Se on progression of malignant mesothelioma tumors, by using Se for an increased
reducing capacity to stimulate their redox metabolism. (Papp et al., 2007) Moreover, Se
might also has toxic effects if consumed in excessive amounts resulting in poisoning.
Although previous in vitro analysis results with HCC cell lines did not detect any Se-
dependent toxic effects (Irmak et al., 2003), Se consumptions should be carefully adjusted,
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and the effects should be further studied to unveil the mechanisms behind the conflictive
effects.

4.5 Correlations Between our DEGs and p53-MDM?2 Pathway Gene Expression
Values

The role of P53 gene in stress conditions for the regulation of the reaction of cells to the
stress factors such as ROS was explained in the Introduction chapter. FOXA1 was found
to be differentially expressed in all 3 days in between cell line comparisons and it is known
to have regulatory roles on the transcription of P53 and MDM2 genes. P53 protein was
also shown to be interacting with 7 of the DEGs that were identified to be important in
differential response to Se-deficiency. Through the common transcription factors
identified that are associated with the expression of our DEGs of interest, some has
functions related to P53 signaling, such as E2F2 gene. We further searched for any
possible correlations between the expression of our 27-gene DEG list and the genes that
are parts of p53-MDM2 pathway and many significant correlations were identified. All
these results might highlight significant role of p53-MDM?2 pathway in the differential
response to Se-deficiency dependent oxidative stress; although the expression of the genes
that constitute that pathway was not differentially expressed themselves. Analysis of the
p53-MDM?2 pathway genes at the protein level might give differential results between
HepG2 and HepG2-2.2.15 cells under Se-deficiency, unlike our results that revealed the
mRNA level results and might be further tested.

4.6 pS3-MDM2 Interaction Inhibitors Gave Promising Results in HCC Cell Lines
With Stem-Like Properties

In this part of the study, 9 different p53-Mdm2 binding inhibitors were tested for their
cytotoxic effects on HCC. 2 of them were determined to be the most promising ones due
to their lowest IC50 values in HepG2 cell line, which is known to have wild type p53
expression. By the examination of morphology changes and cell cycle analysis
experiments, these inhibitors were shown to induce apoptosis. The nuclear localization of
p53 should further be studied by confocal microscopy.

The tested p53-MDM2 interaction inhibitors were spiropyrazoline oxindoles and their
cytotoxic effects were shown in MCF-7 breast cancer cell and cancer stem cells previously
(Amaral et al., 2019; Monteiro et al., 2014). The p53 null status of Hep3B cell line
suggests that these cells might gain stem cell like properties through stem cell
reprogramming. The significantly increased Hep3B cell percentages in sub-G1 stage after
treatment with AM137 and AM139 in cell cycle analysis results highly correlates with the
increased cytotoxic effects of these compounds to cancer stem cells. This further shows
that there might be a preferential activity of these compounds against cancer stem cells.

The immunofluorescence data on liver cancer cells with HepG2 cells indicate the
activation and the nuclear localization of p53 in order to initiate mechanisms involved in
DNA repair. Therefore, we do not observe SubG1 arrest due to active p5S3 protein in
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HepG?2 cells. The cell death induced AM137 and AM139 must be due to other pathways
in these cells that must be studied in the future. However, in the cells with unfunctional
(Huh7 and Mahlavu) or null (Hep3B) for p53 protein we do not observe any difference in
p53 localization upon treatment with AM137 and AM139, which indicates that functional
p53 protein is not required for strong SubGl1 arrest. HBV infection results in accumulation
of ROS through various mechanisms leading to oxidative stress if could not be balanced
(Wang et al., 2016). In such a stress condition one of the known regulated pathways is p53
tumor suppressor gene but HBx protein is known to be associated with its loss of function
mutation (Urso et al., 2015). Both Huh7 and Mahlavu cells have p53 loss of function
mutations on Y220C and R249S respectively based on HBx or aflatoxin as stress-inducing
factors. Therefore their response to p53-MDM2 interaction inhibitors were different
compared to p53 wild-type HepG2 cells’ when immunofluorescence results are
considered.

As stated above, loss of p53 function is correlated with the stemness of cells. In correlation
with previous studies, the overall results support that AM137 and AM139 are active on
cells having stem cell like properties. It might be interesting to test the effects of AM137
and AM139 on HepG2-2.2.15 cell line to compare the cytotoxicity results with that of
HepG2. HepG2-2.2.25 is expected to have more stem-like property with respect to the
HBYV infection (Mani & Andrisani, 2018) and depending on our findings, we might expect
a higher cytotoxic activity of AM137 and AM139 compounds on HepG2-2.2.15 cells.
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CHAPTER 5

CONCLUSION

Hepatocellular carcinoma (HCC) is one of the most common and fatal cancer types. There
are some treatment options used for the treatment of HCC patients; but their efficacies are
low due to the resistance gained by cancer cells and there is still a need for the
identification of novel biomarkers that could be used in diagnosis and novel targeted
therapy strategies. This brings the necessity for the investigation of HCC cell
characteristics driving their increased resistance. One of the known properties of HCC
cells is their resistance to various stress conditions to survive from stress-induced
apoptosis, such as their resistance to increased reactive oxygen species (ROS) unlike
normal cells, which use various mechanisms to reduce ROS and the inability of it results
in apoptosis.

Normal cells use Selenium trace element in their defense mechanisms against oxidative
stress and the lack of Selenium results in oxidative stress-dependent apoptosis. However,
some HCC cell lines were shown to be resistant to Selenium-deficiency dependent
oxidative stress and the mechanism behind this tolerance was unknown. In this thesis
study, we have analyzed the results of a transcriptome data for the determination of the
resistance mechanisms between the sensitive and resistant HCC cell lines. We have
identified 27 genes that were differentially expressed between Selenium-deficiency
dependent oxidative stress sensitive and resistant cell lines which were subcategorized as
“HBV-integration effect genes” or “Se-deficiency effect genes” and proposed to have key
roles in oxidative stress resistance. The expression of 15 of these genes were found to be
regulated by 6 common transcription factors and their potential as HCC biomarkers might
be searched in further studies. The genes that were identified as HBV-integration effect
genes might be promising targets for the inhibition of the resistance gained by cancer cells.
Moreover, the application of Selenium rich diet for HCC patients might further be studied
to reveal genes identified as potential drivers of Se deficiency effect in this study.

FOXALI gene was proposed to be one of the most important DEGs in the oxidative stress-
resistance due to its regulatory role in p53-MDM2 pathway and many significant
correlations between the expressions of our 27 genes and p53-MDM?2 pathway genes were
identified. This might indicate a role of p53-MDM2 pathway in the resistance gained to
selenium-deficiency dependent oxidative stress. Analysis of the abundance of these genes
at the protein level in the resistant and sensitive cell lines in the presence or absence of
Selenium might be very informative for understanding the role of p53-MDM2 pathway in
the resistance mechanism.
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We also revealed the significant cytotoxic effects of two pS3-MDM?2 interaction inhibitors
which gave promising results in HCC cell lines with stem-like properties due to either
unfunctional or lack of p53 activity. We have shown that the application of these
compounds resulted in nuclear localization of p53 in HepG2 cell line with wild type p53;
while no difference in the localization of p53 in cell lines that lack functional p53 was
detected resulting in sub-G1 arrest. The nuclear localization of p53 in HepG2 cells might
be related to the activation of DNA repair mechanisms and this should be further tested
by experimental techniques. Overall, this two spiropyrazoline oxindoles compounds can
be proposed to be promising agents for HCC therapy.
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APPENDICES

APPENDIX A

SCRIPTS

Table 11: R programming script to read and transform raw probe intensities to expression
values.

pData <- read.table(DataFile,row.names=1, header=TRUE, sep="\t")
library("affy")

Data <- ReadAffy(phenoData=pData)

write.exprs(Data, file="raw_data")

eset<- expresso(Data)

Table 12: R programming script used in limma analysis to construct design and contrast
matrix and determine DEGs.

library("limma")
data=read.table('MyDATA' header=T,row.names = 1)
pdata=read.table('phenodata’,header=T,sep="\t')
data=data[,match(pdataScelfile.name, colnames(data))]
day=as.numeric(pdataSDays)
sc=factor(paste(pdataSSelenium,pdataSCells, pdataSDays, sep="."))
design<-model.matrix(~0+sc)
ContMatrix<-makeContrasts(G2vs2215 P_D1=scSelP.G2.D1-scSelP.G2215.D1,
G2vs2215 P_D2=scSelP.G2.D2-scSelP.G2215.D2,
G2vs2215 P_D3=scSelP.G2.D3-scSelP.G2215.D3,
G2vs2215 N_D1=scSelN.G2.D1-scSelN.G2215.D1,
G2vs2215 N_D2=scSelN.G2.D2-scSelN.G2215.D2,
G2vs2215 N_D3=scSelN.G2.D3-scSelN.G2215.D3,
G2_PvsN_D1=scSelN.G2.D1-scSelP.G2.D1,
G2_PvsN_D2=scSelN.G2.D2-scSelP.G2.D2,
G2_PvsN_D3=scSelN.G2.D3-scSelP.G2.D3,
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Table 11: R programming script to read and transform raw probe intensities to expression
values. ( continued )

2215 PvsN_D1=scSelN.2215.D1-scSelP.2215.D1,

2215 PvsN_D2=scSelN.2215.D2-scSelP.2215.D2,

2215 PvsN_D1=scSelN.2215.D1-scSelP.2215.D1,levels=design)
fit<-ImFit(data,design)
fit2<-contrasts.fit(fit, ContMatrix)
fit2<-eBayes(fit2)

Table 13: R programming script for heatmaply function to draw dendograms.

library(heatmaply)

#for html file

heatmaply(matrix,

margins = ¢(10, 400, 1, 1),
dedogram="raw",
scale_fill_gradient_fun = scale_fill_gradient2(midpoint = 0.5, low = "green", mid="white", high = "red"),
k_col =2, grid_gap =0.1,ylab="Gene",
fontsize_row = 5,dendrogram = TRUE,
fontsize_col = 8,

showticklabels = ¢(TRUE, FALSE),

file= "Heatmap.html")

Table 14: Script used to run the Forest algorithm.

python /home/knarci/Omicsintegrator/scripts/forest.py -p Diff G2vs2215 daydependent_.txt -
e /home//home/knarci/msgsteiner-1.3/msgsteiner -c /home/knarci/damla/configs/config_Diff
_G2vs2215 daydependent_w20.0b16.0mu0.2.txt

Table 15: Script used to run the PCST algorithm.

~/damla/configs/config_Diff_G2vs2215_daydependent_w12.0b30.0mu0.2.txt .

nohup python ../forest-tuner.py --forestPath /home/knarci/Omicsintegrator/scripts/

forest.py --msgsteinerPath /home/knarci/msgsteiner-1.3/msgsteiner --prizePath Omics_
OnlyN_D2.txt --edgePath /home/knarci/forest_interaction_alper2.txt -w 2,20,2 -b 2,30,2 -m 0.2
--minNodes 10 --outputsDirName OnlyN_D2 --dataPath OnlyN_D2.tsv --processes 8 &
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APPENDIX B

COMPLETE DEG LIST

Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods.

gznmee Effect | Comparison | Analysis
FOXA1 Se BCL PCST
ONECUT1 Se BCL PCST
CYP7A1 Se BCL PCST
PITX2 Se BCL PCST
ABCG5 Se BCL PCST
FOXE3 Se BCL PCST
ABCC6 Se BCL PCST
C4BPB Se BCL PCST
C4B Se BCL PCST
PLOD1 Se BCL PCST
SYTL4 Se BCL PCST
XYLT2 Se BCL PCST
MASP1 Se BCL PCST
RAB27B Se BCL PCST
SETD1B Se BCL PCST
SFTPD Se BCL PCST
SLC6A20 Se BCL PCST
TBX20 Se BCL PCST
ACLY Se BCL PCST
TXNRD1 Se BCL PCST
S100B Se BCL PCST
SCD5 Se BCL PCST
TXNDC17 Se BCL PCST
ALDH1L2 Se BCL PCST
S100A6 Se BCL PCST
MTR Se BCL PCST
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

ELOVL6 Se BCL PCST
ACOX1 Se BCL PCST
KPNA2 Se BCL PCST
STK38L Se BCL PCST
PPARGCI1A | Se BCL PCST
ERVW-1 Se BCL PCST
TAT Se BCL PCST
KIFC1 Se BCL PCST
ANXA2 Se BCL PCST
IMMT Se BCL PCST
TECR Se BCL PCST
ANXA11 Se BCL PCST
CD81 Se BCL PCST
LCE2A Se BCL PCST
PDCD6 Se BCL PCST
TNFRSF14 Se BCL PCST
WDR1 Se BCL PCST
FRYL Se BCL PCST
UBE2K Se BCL PCST
CNBP Se BCL PCST
LSM4 Se BCL PCST
QDPR Se BCL PCST
DMPK Se BCL PCST
TOE1 Se BCL PCST
WDR77 Se BCL PCST
MBNL1 Se BCL PCST
CA2 Se BCL PCST
SLC19A1 Se BCL PCST
HOXB9 Se BCL PCST
INTS12 Se BCL PCST
DUT Se WCL GSEA
POLD3 Se WCL GSEA
RFC5 Se WCL GSEA
PRIM1 Se WCL GSEA
LIG1 Se WCL GSEA
POLA2 Se WCL GSEA
DUT Se WCL GSEA
E2F8 Se WCL GSEA
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

CENPM Se WCL GSEA
POLD3 Se WCL GSEA
TIMELESS Se WCL GSEA
RAD51AP1 Se WCL GSEA
UBR7 Se WCL GSEA
CDCA3 Se WCL GSEA
ASF1B Se WCL GSEA
MCM?2 Se WCL GSEA
ESPL1 Se WCL GSEA
UNG Se WCL GSEA
CCNE1 Se WCL GSEA
MCM4 Se WCL GSEA
CHEK?2 Se WCL GSEA
SHMT1 Se WCL GSEA
TCF19 Se WCL GSEA
WDR90 Se WCL GSEA
MCM6 Se WCL GSEA
GINS1 Se WCL GSEA
TACC3 Se WCL GSEA
LIG1 Se WCL GSEA
CDC25B Se WCL GSEA
POLA2 Se WCL GSEA
PRIM?2 Se WCL GSEA
RAD51C Se WCL GSEA
MCM3 Se WCL GSEA
SPC25 Se WCL GSEA
MYBL2 Se WCL GSEA
KIF18B Se WCL GSEA
SUV39H1 Se WCL GSEA
CDKN2C Se WCL GSEA
RNASEH2A Se WCL GSEA
CHEK1 Se WCL GSEA
STMN1 Se WCL GSEA
HMMR Se WCL GSEA
RFC2 Se WCL GSEA
DLGAP5S Se WCL GSEA
SLBP Se WCL GSEA
RRM?2 Se WCL GSEA
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

BUB1B Se WCL GSEA
DNMT1 Se WCL GSEA
BRCA1 Se WCL GSEA
FOS Se WCL GSEA
IMPA2 Se WCL GSEA
SLC27A2 Se WCL GSEA
GINS2 Se WCL GSEA
FDFT1 Se WCL GSEA
RAB31 Se WCL GSEA
SERPINAS Se WCL GSEA
DHRS2 Se WCL GSEA
RNASEH2A | Se WCL GSEA
E2F2 Se WCL GSEA
GINS2 Se WCL GSEA
MCM?2 Se WCL GSEA
ESPL1 Se WCL GSEA
EXO1 Se WCL GSEA
MCM6 Se WCL GSEA
E2F1 Se WCL GSEA
TACC3 Se WCL GSEA
KIF15 Se WCL GSEA
CDC25B Se WCL GSEA
POLA2 Se WCL GSEA
CDC7 Se WCL GSEA
PRIM2 Se WCL GSEA
RAD54L Se WCL GSEA
PBK Se WCL GSEA
MCM3 Se WCL GSEA
TRAIP Se WCL GSEA
CENPA Se WCL GSEA
CDC45 Se WCL GSEA
MYBL2 Se WCL GSEA
SUV39H1 Se WCL GSEA
CDKN2C Se WCL GSEA
CHEK1 Se WCL GSEA
MT2A Se WCL GSEA
STMN1 Se WCL GSEA
HMMR Se WCL GSEA
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

IDI1 Se WCL GSEA
PIK3R3 Se WCL GSEA
DHFR Se WCL GSEA
TMEM97 Se WCL GSEA
MCM2 Se WCL GSEA
UNG Se WCL GSEA
MCM4 Se WCL GSEA
EBP Se WCL GSEA
CYB5B Se WCL GSEA
CCNE1 Se WCL GSEA
CXCL10 Se WCL GSEA
GSTO1 Se WCL GSEA
SLC29A2 Se WCL GSEA
MAP6 Se WCL GSEA
GPX4 Se WCL GSEA
IRF4 Se WCL GSEA
TNFRSF18 Se WCL GSEA
PPAP2A Se BCL HEATMAP
H2BFXP Se BCL HEATMAP
LINCO0958 Se BCL HEATMAP
CLYBL Se BCL HEATMAP
HOXD1 Se BCL HEATMAP
RNF217 Se BCL HEATMAP
FAM20A Se BCL HEATMAP
KCNG3 Se BCL HEATMAP
LACC1 Se BCL HEATMAP
CD9 Se BCL HEATMAP
TMEM170B| Se BCL HEATMAP
PVRL3 Se BCL HEATMAP
SMPDL3A Se BCL HEATMAP
CHFR Se BCL HEATMAP
RIN2 Se BCL HEATMAP
PPARGC1A | Se BCL HEATMAP
PDLIM3 Se BCL HEATMAP
Sep5 Se BCL HEATMAP
PRAME Se BCL HEATMAP
MCAM Se BCL HEATMAP
MAGEA6 Se BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

CYSTM1 Se BCL HEATMAP
SLC2A2 Se BCL HEATMAP
FAM198B Se BCL HEATMAP
MBNL3 Se BCL HEATMAP
ISM2 Se BCL HEATMAP
SCPEP1 Se BCL HEATMAP
MRPL52 Se BCL HEATMAP
MPP6 Se BCL HEATMAP
PM20D2 Se BCL HEATMAP
ZC4H2 Se BCL HEATMAP
SLC16A7 Se BCL HEATMAP
TMEM27 Se BCL HEATMAP
GPR19 Se BCL HEATMAP
NDNL2 Se BCL HEATMAP
CYP7A1 Se BCL HEATMAP
GLCCI1 Se BCL HEATMAP
ANXA2 Se BCL HEATMAP
MAGEA3 Se BCL HEATMAP
PCOLCE2 Se BCL HEATMAP
IL15RA Se BCL HEATMAP
FBXO33 Se BCL HEATMAP
HECTD2 Se BCL HEATMAP
MID1 Se BCL HEATMAP
SLC13A4 Se BCL HEATMAP
DNALI1 Se BCL HEATMAP
ALDH1L2 Se BCL HEATMAP
LY96 Se BCL HEATMAP
HPX Se BCL HEATMAP
INSIG2 Se BCL HEATMAP
SMIM3 Se BCL HEATMAP
FMR1 Se BCL HEATMAP
LINCO0889 Se BCL HEATMAP
RING1 Se BCL HEATMAP
SS18L1 Se BCL HEATMAP
TUBBP5 Se BCL HEATMAP
DIRAS1 Se BCL HEATMAP
DHX33 Se BCL HEATMAP
NRG1 Se BCL HEATMAP

84



Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

RNF19A Se BCL HEATMAP
FKBPL Se BCL HEATMAP
CTNNAL1 Se BCL HEATMAP
NOTCH1 Se BCL HEATMAP
SMAD9 Se BCL HEATMAP
LOC389831 | Se BCL HEATMAP
DIDO1 Se BCL HEATMAP
AOC3 Se BCL HEATMAP
HSPB1 Se BCL HEATMAP
TNFRSF11A | Se BCL HEATMAP
C9orf40 Se BCL HEATMAP
NEDD8 Se BCL HEATMAP
SV2A Se BCL HEATMAP
CRIM1 Se BCL HEATMAP
GCA Se BCL HEATMAP
KIFAP3 Se BCL HEATMAP
MYRIP Se BCL HEATMAP
CCND3 Se BCL HEATMAP
DDAH2 Se BCL HEATMAP
TM2D3 Se BCL HEATMAP
WFDC21P Se BCL HEATMAP
AVPI1 Se BCL HEATMAP
MUC15 Se BCL HEATMAP
ICAM?2 Se BCL HEATMAP
TXNRD1 Se BCL HEATMAP
ARHGEF26 Se BCL HEATMAP
ARL4A Se BCL HEATMAP
LZTFL1 Se BCL HEATMAP
MAP3K1 Se BCL HEATMAP
ALCAM Se BCL HEATMAP
STRA6 Se BCL HEATMAP
FRMD8 Se BCL HEATMAP
FZD5 Se BCL HEATMAP
C70rf26 Se BCL HEATMAP
ANTXR1 Se BCL HEATMAP
CTSS Se BCL HEATMAP
JADE2 Se BCL HEATMAP
NHP2L1 Se BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

ACTR10 Se BCL HEATMAP
CAMK2N2 Se BCL HEATMAP
IGF2 Se BCL HEATMAP
SCML2 Se BCL HEATMAP
CCDC91 Se BCL HEATMAP
RAB30-AS1 | Se BCL HEATMAP
FBXL22 Se BCL HEATMAP
CREBL2 Se BCL HEATMAP
ELOF1 Se BCL HEATMAP
C140rf28 Se BCL HEATMAP
SMPX Se BCL HEATMAP
RIMS3 Se BCL HEATMAP
POP7 Se BCL HEATMAP
PCMTD1 Se BCL HEATMAP
SEZ6L2 Se BCL HEATMAP
RMDN1 Se BCL HEATMAP
SEPSECS Se BCL HEATMAP
TRIQK Se BCL HEATMAP
GMPR2 Se BCL HEATMAP
TRAPPC8 Se BCL HEATMAP
ACOX1 Se BCL HEATMAP
MCTP2 Se BCL HEATMAP
FAM184A Se BCL HEATMAP
PAFAH1B3 Se BCL HEATMAP
NVL Se BCL HEATMAP
WDR89 Se BCL HEATMAP
FAMG65C Se BCL HEATMAP
AIFM2 Se BCL HEATMAP
CNTLN Se BCL HEATMAP
Clorf85 Se BCL HEATMAP
STK38L Se BCL HEATMAP
GEM Se BCL HEATMAP
AP1G2 Se BCL HEATMAP
SIL1 Se BCL HEATMAP
LRRN4 Se BCL HEATMAP
TECR Se BCL HEATMAP
DECR2 Se BCL HEATMAP
PAPOLA Se BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

ZNF605 Se BCL HEATMAP
SLC25A27 Se BCL HEATMAP
NME4 Se BCL HEATMAP
PITX1 Se BCL HEATMAP
BAIAP2 Se BCL HEATMAP
EML1 Se BCL HEATMAP
TPBG Se BCL HEATMAP
DFNB59 Se BCL HEATMAP
ATP2B2 Se BCL HEATMAP
COPB1 Se BCL HEATMAP
NCKAPSL Se BCL HEATMAP
RNF157 Se BCL HEATMAP
NAT14 Se BCL HEATMAP
TGDS Se BCL HEATMAP
PRKCSH Se BCL HEATMAP
CAMK2D Se BCL HEATMAP
CREBZF Se BCL HEATMAP
SIX4 Se BCL HEATMAP
ZNF608 Se BCL HEATMAP
FOXA1 Se BCL HEATMAP
MBL2 Se BCL HEATMAP
WDR34 Se BCL HEATMAP
LARP1 Se BCL HEATMAP
FGF13 HBV BCL HEATMAP
GPC3 HBV BCL HEATMAP
MAP7D2 HBV BCL HEATMAP
NR5A2 HBV BCL HEATMAP
HDHD1 HBV BCL HEATMAP
PLA2G16 HBV BCL HEATMAP
GNG4 HBV BCL HEATMAP
FST HBV BCL HEATMAP
EPB41L3 HBV BCL HEATMAP
WDR72 HBV BCL HEATMAP
SETBP1 HBV BCL HEATMAP
L3MBTL4 HBV BCL HEATMAP
PAQR9S HBV BCL HEATMAP
MSRB3 HBV BCL HEATMAP
CD24 HBV BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

CDH17 HBV BCL HEATMAP
ADAMTS2 | HBV BCL HEATMAP
PLACS8 HBV BCL HEATMAP
CPED1 HBV BCL HEATMAP
FAM127A | HBV BCL HEATMAP
HOXA10 HBV BCL HEATMAP
SPP1 HBV BCL HEATMAP
FAM101B | HBV BCL HEATMAP
LGI1 HBV BCL HEATMAP
FKBP11 HBV BCL HEATMAP
ARL15 HBV BCL HEATMAP
LOC400043 | HBV BCL HEATMAP
HABP2 HBV BCL HEATMAP
KLHL14 HBV BCL HEATMAP
FAM110C | HBV BCL HEATMAP
STXBP6 HBV BCL HEATMAP
GPR137B HBV BCL HEATMAP
DGKE HBV BCL HEATMAP
CTBP2 HBV BCL HEATMAP
VNN1 HBV BCL HEATMAP
TMEM261 | HBV BCL HEATMAP
OTUD1 HBV BCL HEATMAP
MAGI2-AS3 | HBV BCL HEATMAP
PARD3B HBV BCL HEATMAP
PLP2 HBV BCL HEATMAP
TUBB2B HBV BCL HEATMAP
PDGFA HBV BCL HEATMAP
DPYD HBV BCL HEATMAP
SLCO1B3 HBV BCL HEATMAP
CCL16 HBV BCL HEATMAP
PRLR HBV BCL HEATMAP
FOXN3 HBV BCL HEATMAP
MEGF6 HBV BCL HEATMAP
ABCG5 HBV BCL HEATMAP
CTDSPL HBV BCL HEATMAP
TLE4 HBV BCL HEATMAP
ZDHHC14 | HBV BCL HEATMAP
RASGEF1A | HBV BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

FBXL21 HBV BCL HEATMAP
HOXC9 HBV BCL HEATMAP
ZAK HBV BCL HEATMAP
AKR1C3 HBV BCL HEATMAP
EMP2 HBV BCL HEATMAP
SERPINI1 HBV BCL HEATMAP
CYB561 HBV BCL HEATMAP
BCL11A HBV BCL HEATMAP
SLC35A4 HBV BCL HEATMAP
TEAD2 HBV BCL HEATMAP
IRX3 HBV BCL HEATMAP
PAG1 HBV BCL HEATMAP
LINCOO162 | HBV BCL HEATMAP
PTPRJ HBV BCL HEATMAP
RBM23 HBV BCL HEATMAP
TMEMA42 HBV BCL HEATMAP
SEMAA4F HBV BCL HEATMAP
CHST9 HBV BCL HEATMAP
NGFRAP1 | HBV BCL HEATMAP
BIN1 HBV BCL HEATMAP
ATP10D HBV BCL HEATMAP
BAGALT6 HBV BCL HEATMAP
RBMS1 HBV BCL HEATMAP
PRIMA1 HBV BCL HEATMAP
RPS23 HBV BCL HEATMAP
GDA HBV BCL HEATMAP
TNIK HBV BCL HEATMAP
PROM1 HBV BCL HEATMAP
TBC1D16 HBV BCL HEATMAP
GSTO2 HBV BCL HEATMAP
SPINK1 HBV BCL HEATMAP
SEMA3G HBV BCL HEATMAP
SLC38A4 HBV BCL HEATMAP
SLC41A1 HBV BCL HEATMAP
RBMA47 HBV BCL HEATMAP
CD163 HBV BCL HEATMAP
UGT2B4 HBV BCL HEATMAP
CLDN11 HBV BCL HEATMAP
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Table 16: All the DEGs identified in this study by the indicated analysis and comparison
methods. ( continued )

SREK1IP1 HBV BCL HEATMAP
TSPANS HBV BCL HEATMAP
LINCO1234 | HBV BCL HEATMAP
IL6R HBV BCL HEATMAP
NME3 HBV BCL HEATMAP
MARCH3 HBV BCL HEATMAP
PPP1R3D HBV BCL HEATMAP
MYO10 HBV BCL HEATMAP
PRTG HBV BCL HEATMAP
ZNF703 HBV BCL HEATMAP
CYP39A1 HBV BCL HEATMAP
DEFB1 HBV BCL HEATMAP
FAM13A HBV BCL HEATMAP
C100rf10 HBV BCL HEATMAP
BHMT2 HBV BCL HEATMAP
DKK4 HBV BCL HEATMAP
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APPENDIX C

HBV+ OR HBV- HCC PATIENT SURVIVAL CURVES
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Figure 28: The Kaplan Meier plots that were generated for FGF13 gene with HBV- and
HBV+ HCC patient cohorts in liver cancer RN A-seq dataset, respectively.
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APPENDIX D

WU_HBX TARGETS_3 _UP GENE SET AND GSEA RESULT

Table 17: The genes that are upregulated in SKHEP1 and primary hepatocytes composing
WU _HBX TARGETS 3 UP gene set in Molecular Signatures Database

GENE SYMBOLS
CASP4
CCNI
CDK4
CDKN3
DADI
FAS
GSTM2
IFITMI1
IFNAR2
MEFNG
MYB
MYC
PDCD2
SLC2A5
TFAP4
TWF1
TYMS
VCL
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Table: GSEA Results Summary

rma normalized data_GSEA_collapsed_to_symbols 2215P_vs_G2P cls
Dataset #2215P_versus_G2P.2215P_vs_G2P.cls
#2215P_versus_G2P_repos
Phenotype 2215P_vs_G2P.cls#2215P_versus_G2P_repos
Upregulated in class 2215P
GeneSet WU_HBX_TARGETS_3 UP
Enrichment Score (ES) 0.57088405
MNormalized Enrichment Score (NES) ([ 1.3499917
Nominal p-value 0.11741683
FOR g-value 0.1232687
[FWER p-Value |[0:138

Enrichment plot: WU_HBX _TARGETS 3 _UP
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Figure 29: GSEA result of WU _HBX TARGETS 3 UP gene set in HepG2-2.2.15 vs
HepG?2 cells grown in presence of Se.
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